enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orbit of Mars - Wikipedia

    en.wikipedia.org/wiki/Orbit_of_Mars

    Mars has an orbit with a semimajor axis of 1.524 astronomical units (228 million km) (12.673 light minutes), and an eccentricity of 0.0934. [1][2] The planet orbits the Sun in 687 days [3] and travels 9.55 AU in doing so, [4] making the average orbital speed 24 km/s. The eccentricity is greater than that of every other planet except Mercury ...

  3. Equation of time - Wikipedia

    en.wikipedia.org/wiki/Equation_of_time

    The equation of time vanishes only for a planet with zero axial tilt and zero orbital eccentricity. [5] Two examples of planets with large equations of time are Mars and Uranus. On Mars the difference between sundial time and clock time can be as much as 50 minutes, due to the considerably greater eccentricity of its orbit.

  4. Timekeeping on Mars - Wikipedia

    en.wikipedia.org/wiki/Timekeeping_on_Mars

    Definition of year and seasons. The length of time for Mars to complete one orbit around the Sun in respect to the stars, its sidereal year, is about 686.98 Earth solar days (≈ 1.88 Earth years), or 668.5991 sols. Because of the eccentricity of Mars' orbit, the seasons are not of equal length.

  5. Orbital period - Wikipedia

    en.wikipedia.org/wiki/Orbital_period

    Orbit insertion. v. t. e. The orbital period (also revolution period) is the amount of time a given astronomical object takes to complete one orbit around another object. In astronomy, it usually applies to planets or asteroids orbiting the Sun, moons orbiting planets, exoplanets orbiting other stars, or binary stars.

  6. Orbit equation - Wikipedia

    en.wikipedia.org/wiki/Orbit_equation

    In astrodynamics, an orbit equation defines the path of orbiting body around central body relative to , without specifying position as a function of time.Under standard assumptions, a body moving under the influence of a force, directed to a central body, with a magnitude inversely proportional to the square of the distance (such as gravity), has an orbit that is a conic section (i.e. circular ...

  7. Lambert's problem - Wikipedia

    en.wikipedia.org/wiki/Lambert's_problem

    Lambert's problem. In celestial mechanics, Lambert's problem is concerned with the determination of an orbit from two position vectors and the time of flight, posed in the 18th century by Johann Heinrich Lambert and formally solved with mathematical proof by Joseph-Louis Lagrange. It has important applications in the areas of rendezvous ...

  8. Areostationary orbit - Wikipedia

    en.wikipedia.org/wiki/Areostationary_orbit

    Areostationary orbit. An areostationary orbit, areosynchronous equatorial orbit (AEO), or Mars geostationary orbit is a circular areo­synchronous orbit (ASO) approximately 17,032 km (10,583 mi) in altitude above the Mars equator and following the direction of Mars's rotation. An object in such an orbit has an orbital period equal to Mars's ...

  9. Darian calendar - Wikipedia

    en.wikipedia.org/wiki/Darian_calendar

    Darian calendar. The Darian calendar is a proposed system of timekeeping designed to serve the needs of any possible future human settlers on the planet Mars. It was created by aerospace engineer, political scientist, and space jurist Thomas Gangale in 1985 and named by him after his son Darius.