enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    Identity 1: ⁡ + ⁡ = The following two results follow from this and the ratio identities. To obtain the first, divide both sides of ⁡ + ⁡ = by ⁡; for the second, divide by ⁡.

  3. Euler's identity - Wikipedia

    en.wikipedia.org/wiki/Euler's_identity

    Euler's identity asserts that is equal to −1. The expression e i π {\displaystyle e^{i\pi }} is a special case of the expression e z {\displaystyle e^{z}} , where z is any complex number . In general, e z {\displaystyle e^{z}} is defined for complex z by extending one of the definitions of the exponential function from real exponents to ...

  4. Identity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Identity_(mathematics)

    Visual proof of the Pythagorean identity: for any angle , the point (,) = (⁡, ⁡) lies on the unit circle, which satisfies the equation + =.Thus, ⁡ + ⁡ =. In mathematics, an identity is an equality relating one mathematical expression A to another mathematical expression B, such that A and B (which might contain some variables) produce the same value for all values of the variables ...

  5. Pythagorean trigonometric identity - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_trigonometric...

    In this way, this trigonometric identity involving the tangent and the secant follows from the Pythagorean theorem. The angle opposite the leg of length 1 (this angle can be labeled φ = π/2 − θ) has cotangent equal to the length of the other leg, and cosecant equal to the length of the hypotenuse. In that way, this trigonometric identity ...

  6. Euler's four-square identity - Wikipedia

    en.wikipedia.org/wiki/Euler's_four-square_identity

    Comment: The proof of Euler's four-square identity is by simple algebraic evaluation. Quaternions derive from the four-square identity, which can be written as the product of two inner products of 4-dimensional vectors, yielding again an inner product of 4-dimensional vectors: (a·a)(b·b) = (a×b)·(a×b).

  7. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    The original proof is based on the Taylor series expansions of the exponential function e z (where z is a complex number) and of sin x and cos x for real numbers x . In fact, the same proof shows that Euler's formula is even valid for all complex numbers x .

  8. Proofs That Really Count - Wikipedia

    en.wikipedia.org/wiki/Proofs_That_Really_Count

    Proofs That Really Count: the Art of Combinatorial Proof is an undergraduate-level mathematics book on combinatorial proofs of mathematical identies.That is, it concerns equations between two integer-valued formulas, shown to be equal either by showing that both sides of the equation count the same type of mathematical objects, or by finding a one-to-one correspondence between the different ...

  9. Lagrange's four-square theorem - Wikipedia

    en.wikipedia.org/wiki/Lagrange's_four-square_theorem

    In the descent above, we must rule out both the case y 1 = y 2 = y 3 = y 4 = m/2 (which would give r = m and no descent), and also the case y 1 = y 2 = y 3 = y 4 = 0 (which would give r = 0 rather than strictly positive). For both of those cases, one can check that mp = x 1 2 + x 2 2 + x 3 2 + x 4 2 would be a multiple of m 2, contradicting the ...