enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Spectral index - Wikipedia

    en.wikipedia.org/wiki/Spectral_index

    In astronomy, the spectral index of a source is a measure of the dependence of radiative flux density (that is, radiative flux per unit of frequency) on frequency. Given frequency ν {\displaystyle \nu } in Hz and radiative flux density S ν {\displaystyle S_{\nu }} in Jy, the spectral index α {\displaystyle \alpha } is given implicitly by S ...

  3. Spectral flux density - Wikipedia

    en.wikipedia.org/wiki/Spectral_flux_density

    The relative spectral flux density is also useful if we wish to compare a source's flux density at one wavelength with the same source's flux density at another wavelength; for example, if we wish to demonstrate how the Sun's spectrum peaks in the visible part of the EM spectrum, a graph of the Sun's relative spectral flux density will suffice.

  4. AB magnitude - Wikipedia

    en.wikipedia.org/wiki/AB_magnitude

    The monochromatic AB magnitude is defined as the logarithm of a spectral flux density with the usual scaling of astronomical magnitudes and a zero-point of about 3 631 janskys (symbol Jy), [1] where 1 Jy = 10 −26 W Hz −1 m −2 = 10 −23 erg s −1 Hz −1 cm −2 ("about" because the true definition of the zero point is based on magnitudes as shown below).

  5. Jansky - Wikipedia

    en.wikipedia.org/wiki/Jansky

    To calculate the flux density in janskys, the total power detected (in watts) is divided by the receiver collecting area (in square meters), and then divided by the detector bandwidth (in hertz). The flux density of astronomical sources is many orders of magnitude below 1 W·m −2 ·Hz −1 , so the result is multiplied by 10 26 to get a more ...

  6. Radiant exposure - Wikipedia

    en.wikipedia.org/wiki/Radiant_exposure

    In radiometry, radiant exposure or fluence is the radiant energy received by a surface per unit area, or equivalently the irradiance of a surface, integrated over time of irradiation, and spectral exposure is the radiant exposure per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency or of wavelength.

  7. Radiant flux - Wikipedia

    en.wikipedia.org/wiki/Radiant_flux

    A flow chart describing the relationship of various physical quantities, including radiant flux and exitance. In radiometry, radiant flux or radiant power is the radiant energy emitted, reflected, transmitted, or received per unit time, and spectral flux or spectral power is the radiant flux per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency ...

  8. Radiosity (radiometry) - Wikipedia

    en.wikipedia.org/wiki/Radiosity_(radiometry)

    Radiant flux: Φ e [nb 2] watt: W = J/s M⋅L 2 ⋅T −3: Radiant energy emitted, reflected, transmitted or received, per unit time. This is sometimes also called "radiant power", and called luminosity in Astronomy. Spectral flux: Φ e,ν [nb 3] watt per hertz: W/Hz: M⋅L 2 ⋅T −2: Radiant flux per unit frequency or wavelength. The latter ...

  9. Radiative transfer - Wikipedia

    en.wikipedia.org/wiki/Radiative_transfer

    This extra equation can be used as a closure relation for the truncated system of moments. Note that the first two moments have simple physical meanings. is the isotropic intensity at a point, and is the flux through that point in the direction.

  1. Related searches how to calculate flux astronomy frequency formula physics problems practice

    spectrum flux density chartab frequency formula
    spectral flux density