Search results
Results from the WOW.Com Content Network
In 1972, S. Jonathan Singer and Garth Nicolson developed new ideas for membrane structure. Their proposal was the fluid mosaic model, which is one of the dominant models now. It has two key features—a mosaic of proteins embedded in the membrane, and the membrane being a fluid bi-layer of lipids.
Cross-sectional view of the structures that can be formed by phospholipids in an aqueous solution. A biological membrane, biomembrane or cell membrane is a selectively permeable membrane that separates the interior of a cell from the external environment or creates intracellular compartments by serving as a boundary between one part of the cell and another.
Membrane components than can be recycled (thermoplastics): PP, polyester, etc. Membrane sheets: constructed from a number of different polymers and additives and therefore inherently difficult to accurately and efficiently separate. Main advantage: it displaces virgin plastic production.
E, extracellular space; P, plasma membrane; I, intracellular space. An integral, or intrinsic, membrane protein (IMP) [1] is a type of membrane protein that is permanently attached to the biological membrane. All transmembrane proteins can be classified as IMPs, but not all IMPs are transmembrane proteins. [2]
Loeb (1920) also studied gelatin extensively, with and without a membrane, showing that more of the properties attributed to the plasma membrane could be duplicated in gels without a membrane. In particular, he found that an electrical potential difference between the gelatin and the outside medium could be developed, based on the H+ concentration.
Partially charged non-electrolytes, that are more or less polar, such as ethanol, methanol or urea, are able to pass through the membrane through aqueous channels immersed in the membrane. There is no effective regulation mechanism that limits this transport, which indicates an intrinsic vulnerability of the cells to the penetration of these ...
The membrane fusion event that triggers viral entrance is caused by the viral membrane fusion protein. Many enveloped viruses only have one protein visible on the surface of the particle, which is required for both mediating adhesion to the cell surface and for the subsequent membrane fusion process.
Several computational methods were developed, with a limited success, for predicting transmembrane alpha-helices and their topology. Pioneer methods utilized the fact that membrane-spanning regions contain more hydrophobic residues than other parts of the protein, however applying different hydrophobic scales altered the prediction results.