enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Differentiation of trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Differentiation_of...

    The differentiation of trigonometric functions is the mathematical process of finding the derivative of a trigonometric function, or its rate of change with respect to a variable. For example, the derivative of the sine function is written sin ′ ( a ) = cos( a ), meaning that the rate of change of sin( x ) at a particular angle x = a is given ...

  3. Trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_functions

    Basis of trigonometry: if two right triangles have equal acute angles, they are similar, so their corresponding side lengths are proportional.. In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) [1] are real functions which relate an angle of a right-angled triangle to ratios of two side lengths.

  4. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 33x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.

  5. Small-angle approximation - Wikipedia

    en.wikipedia.org/wiki/Small-angle_approximation

    The red section on the right, d, is the difference between the lengths of the hypotenuse, H, and the adjacent side, A.As is shown, H and A are almost the same length, meaning cos θ is close to 1 and ⁠ θ 2 / 2 ⁠ helps trim the red away.

  6. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    For the tan function, the equation is: tan ⁡ θ 2 = ± 1 − cos ⁡ θ 1 + cos ⁡ θ . {\displaystyle \tan {\frac {\theta }{2}}=\pm \,{\sqrt {\frac {1-\cos \theta }{1+\cos \theta }}}.} Then multiplying the numerator and denominator inside the square root by (1 + cos θ) and using Pythagorean identities leads to:

  7. Pythagorean trigonometric identity - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_trigonometric...

    The unit circle centered at the origin in the Euclidean plane is defined by the equation: [2] x 2 + y 2 = 1. {\displaystyle x^{2}+y^{2}=1.} Given an angle θ , there is a unique point P on the unit circle at an anticlockwise angle of θ from the x -axis, and the x - and y -coordinates of P are: [ 3 ]

  8. Tangent half-angle substitution - Wikipedia

    en.wikipedia.org/wiki/Tangent_half-angle...

    The tangent half-angle substitution relates an angle to the slope of a line. Introducing a new variable = ⁡, sines and cosines can be expressed as rational functions of , and can be expressed as the product of and a rational function of , as follows: ⁡ = +, ⁡ = +, = +.

  9. Tangent half-angle formula - Wikipedia

    en.wikipedia.org/wiki/Tangent_half-angle_formula

    The sides of this rhombus have length 1. The angle between the horizontal line and the shown diagonal is ⁠ 1 / 2 ⁠ (a + b).This is a geometric way to prove the particular tangent half-angle formula that says tan ⁠ 1 / 2 ⁠ (a + b) = (sin a + sin b) / (cos a + cos b).