Search results
Results from the WOW.Com Content Network
Function rank is an important concept to array programming languages in general, by analogy to tensor rank in mathematics: functions that operate on data may be classified by the number of dimensions they act on. Ordinary multiplication, for example, is a scalar ranked function because it operates on zero-dimensional data (individual numbers).
defines a variable named array (or assigns a new value to an existing variable with the name array) which is an array consisting of the values 1, 3, 5, 7, and 9. That is, the array starts at 1 (the initial value), increments with each step from the previous value by 2 (the increment value), and stops once it reaches (or is about to exceed) 9 ...
This change gives the following algorithm (for a zero-based array). -- To shuffle an array a of n elements (indices 0..n-1): for i from n−1 down to 1 do j ← random integer such that 0 ≤ j ≤ i exchange a[j] and a[i] An equivalent version which shuffles the array in the opposite direction (from lowest index to highest) is:
Octave has a mechanism for handling functions that take an unspecified number of arguments without explicit upper limit. To specify a list of zero or more arguments, use the special argument varargin as the last (or only) argument in the list. varargin is a cell array containing all the input arguments.
Kernel density estimation of 100 normally distributed random numbers using different smoothing bandwidths.. In statistics, kernel density estimation (KDE) is the application of kernel smoothing for probability density estimation, i.e., a non-parametric method to estimate the probability density function of a random variable based on kernels as weights.
Thus a one-dimensional array is a list of data, a two-dimensional array is a rectangle of data, [12] a three-dimensional array a block of data, etc. This should not be confused with the dimension of the set of all matrices with a given domain, that is, the number of elements in the array.
Moreover, for n < p (the number of observations is less than the number of random variables) the empirical estimate of the covariance matrix becomes singular, i.e. it cannot be inverted to compute the precision matrix. As an alternative, many methods have been suggested to improve the estimation of the covariance matrix.
A simple dynamic array can be constructed by allocating an array of fixed-size, typically larger than the number of elements immediately required. The elements of the dynamic array are stored contiguously at the start of the underlying array, and the remaining positions towards the end of the underlying array are reserved, or unused.