enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bit-reversal permutation - Wikipedia

    en.wikipedia.org/wiki/Bit-reversal_permutation

    Because the bit-reversal permutation is an involution, it may be performed easily in place (without copying the data into another array) by swapping pairs of elements. In the random-access machine commonly used in algorithm analysis, a simple algorithm that scans the indexes in input order and swaps whenever the scan encounters an index whose ...

  3. Queue (abstract data type) - Wikipedia

    en.wikipedia.org/wiki/Queue_(abstract_data_type)

    For example, Perl and Ruby allow pushing and popping an array from both ends, so one can use push and shift functions to enqueue and dequeue a list (or, in reverse, one can use unshift and pop), [2] although in some cases these operations are not efficient.

  4. Array (data structure) - Wikipedia

    en.wikipedia.org/wiki/Array_(data_structure)

    Arrays can have multiple dimensions, thus it is not uncommon to access an array using multiple indices. For example, a two-dimensional array A with three rows and four columns might provide access to the element at the 2nd row and 4th column by the expression A[1][3] in the case of a zero-based indexing

  5. Heap's algorithm - Wikipedia

    en.wikipedia.org/wiki/Heap's_algorithm

    Basis: Heap's Algorithm trivially permutes an array A of size 1 as outputting A is the one and only permutation of A. Induction: Assume Heap's Algorithm permutes an array of size i. Using the results from the previous proof, every element of A will be in the "buffer" once when the first i elements are permuted.

  6. Row- and column-major order - Wikipedia

    en.wikipedia.org/wiki/Row-_and_column-major_order

    More generally, there are d! possible orders for a given array, one for each permutation of dimensions (with row-major and column-order just 2 special cases), although the lists of stride values are not necessarily permutations of each other, e.g., in the 2-by-3 example above, the strides are (3,1) for row-major and (1,2) for column-major.

  7. Map (higher-order function) - Wikipedia

    en.wikipedia.org/wiki/Map_(higher-order_function)

    For example, reverse :: List a -> List a, which reverses a list, is a natural transformation, as is flattenInorder :: Tree a -> List a, which flattens a tree from left to right, and even sortBy :: (a -> a -> Bool) -> List a -> List a, which sorts a list based on a provided comparison function.

  8. Fold (higher-order function) - Wikipedia

    en.wikipedia.org/wiki/Fold_(higher-order_function)

    Folds can be regarded as consistently replacing the structural components of a data structure with functions and values. Lists, for example, are built up in many functional languages from two primitives: any list is either an empty list, commonly called nil ([]), or is constructed by prefixing an element in front of another list, creating what is called a cons node ( Cons(X1,Cons(X2,Cons ...

  9. Insertion sort - Wikipedia

    en.wikipedia.org/wiki/Insertion_sort

    The best case input is an array that is already sorted. In this case insertion sort has a linear running time (i.e., O(n)). During each iteration, the first remaining element of the input is only compared with the right-most element of the sorted subsection of the array. The simplest worst case input is an array sorted in reverse order.