Search results
Results from the WOW.Com Content Network
In cellular biology, active transport is the movement of molecules or ions across a cell membrane from a region of lower concentration to a region of higher concentration—against the concentration gradient. Active transport requires cellular energy to achieve this movement.
Active absorption refers to the absorption of water by roots with the help of adenosine triphosphate, generated by the root respiration: as the root cells actively take part in the process, it is called active absorption. According to Jenner, active absorption takes place in low transpiring and well-watered plants, and 4% of total water ...
Secondary active transport is when one solute moves down the electrochemical gradient to produce enough energy to force the transport of another solute from low concentration to high concentration. [citation needed] An example of where this occurs is in the movement of glucose within the proximal convoluted tubule (PCT).
Diffusion vs. Transport. In biology, an ion transporter is a transmembrane protein that moves ions (or other small molecules) across a biological membrane to accomplish many different biological functions, including cellular communication, maintaining homeostasis, energy production, etc. [1] There are different types of transporters including pumps, uniporters, antiporters, and symporters.
Method of glucose uptake differs throughout tissues depending on two factors; the metabolic needs of the tissue and availability of glucose.The two ways in which glucose uptake can take place are facilitated diffusion (a passive process) and secondary active transport (an active process which on the ion-gradient which is established through the hydrolysis of ATP, known as primary active ...
This type of transport is known as secondary active transport and is powered by the energy derived from the concentration gradient of the ions/molecules across the membrane the cotransporter protein is integrated within. [1]
Pinocytosis, also known as cell drinking, is the absorption of small aqueous particles along with the membrane receptors that recognize them.It is an example of fluid phase endocytosis and is usually a continuous process within the cell.
Crane's discovery of cotransport was the first ever proposal of flux coupling in biology. [16] Crane in 1961 was the first to formulate the cotransport concept to explain active transport. Specifically, he proposed that the accumulation of glucose in the intestinal epithelium across the brush border membrane was [is] coupled to downhill Na+ ...