enow.com Web Search

  1. Ad

    related to: flux density vector solenoid circuit

Search results

  1. Results from the WOW.Com Content Network
  2. Solenoid - Wikipedia

    en.wikipedia.org/wiki/Solenoid

    This is a derivation of the magnetic flux density around a solenoid that is long enough so that fringe effects can be ignored. In Figure 1, we immediately know that the flux density vector points in the positive z direction inside the solenoid, and in the negative z direction outside the solenoid.

  3. Solenoidal vector field - Wikipedia

    en.wikipedia.org/wiki/Solenoidal_vector_field

    An example of a solenoidal vector field, (,) = (,) In vector calculus a solenoidal vector field (also known as an incompressible vector field , a divergence-free vector field , or a transverse vector field ) is a vector field v with divergence zero at all points in the field: ∇ ⋅ v = 0. {\displaystyle \nabla \cdot \mathbf {v} =0.}

  4. Poynting vector - Wikipedia

    en.wikipedia.org/wiki/Poynting_vector

    In physics, the Poynting vector (or Umov–Poynting vector) represents the directional energy flux (the energy transfer per unit area, per unit time) or power flow of an electromagnetic field. The SI unit of the Poynting vector is the watt per square metre (W/m 2 ); kg/s 3 in base SI units.

  5. Variable force solenoid - Wikipedia

    en.wikipedia.org/wiki/Variable_force_solenoid

    Out of necessity there is a circular air gap that can only provide radial force (also known as side loading). These two air gaps dominate the magnetic circuit reluctance. The rate of change of the working air gap stored energy provides the axial magnetic force. The images below show flux lines and field density for an example solenoid design [2]

  6. Magnetic flux - Wikipedia

    en.wikipedia.org/wiki/Magnetic_flux

    If the magnetic field is constant, the magnetic flux passing through a surface of vector area S is = = ⁡, where B is the magnitude of the magnetic field (the magnetic flux density) having the unit of Wb/m 2 , S is the area of the surface, and θ is the angle between the magnetic field lines and the normal (perpendicular) to S.

  7. Aharonov–Bohm effect - Wikipedia

    en.wikipedia.org/wiki/Aharonov–Bohm_effect

    Aharonov–Bohm effect apparatus showing barrier, X; slots S 1 and S 2; electron paths e 1 and e 2; magnetic whisker, W; screen, P; interference pattern, I; magnetic flux density, B (pointing out of figure); and magnetic vector potential, A. B is essentially nil outside the whisker. In some experiments, the whisker is replaced by a solenoid.

  8. Flux linkage - Wikipedia

    en.wikipedia.org/wiki/Flux_linkage

    where is the magnetic flux density, or magnetic flux per unit area at a given point in space. The simplest example of such a system is a single circular coil of conductive wire immersed in a magnetic field, in which case the flux linkage is simply the flux passing through the loop.

  9. Electric flux - Wikipedia

    en.wikipedia.org/wiki/Electric_flux

    In electromagnetism, electric flux is the total electric field that crosses a given surface. [1] The electric flux through a closed surface is equal to the total charge contained within that surface. The electric field E can exert a force on an electric charge at any point in space. The electric field is the gradient of the electric potential.

  1. Ad

    related to: flux density vector solenoid circuit