enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. B-tree - Wikipedia

    en.wikipedia.org/wiki/B-tree

    A B-tree of depth n+1 can hold about U times as many items as a B-tree of depth n, but the cost of search, insert, and delete operations grows with the depth of the tree. As with any balanced tree, the cost grows much more slowly than the number of elements.

  3. B+ tree - Wikipedia

    en.wikipedia.org/wiki/B+_tree

    A B+ tree consists of a root, internal nodes and leaves. [1] The root may be either a leaf or a node with two or more children. A B+ tree can be viewed as a B-tree in which each node contains only keys (not key–value pairs), and to which an additional level is added at the bottom with linked leaves.

  4. 2–3–4 tree - Wikipedia

    en.wikipedia.org/wiki/2–3–4_tree

    If a large proportion of the elements of the tree are deleted, then the tree will become much larger than the current size of the stored elements, and the performance of other operations will be adversely affected by the deleted elements. When this is undesirable, the following algorithm can be followed to remove a value from the 2–3–4 tree:

  5. Order statistic tree - Wikipedia

    en.wikipedia.org/wiki/Order_statistic_tree

    To turn a regular search tree into an order statistic tree, the nodes of the tree need to store one additional value, which is the size of the subtree rooted at that node (i.e., the number of nodes below it). All operations that modify the tree must adjust this information to preserve the invariant that size[x] = size[left[x]] + size[right[x]] + 1

  6. 2–3 tree - Wikipedia

    en.wikipedia.org/wiki/2–3_tree

    In computer science, a 2–3 tree is a tree data structure, where every node with children (internal node) has either two children (2-node) and one data element or three children (3-node) and two data elements. A 2–3 tree is a B-tree of order 3. [1] Nodes on the outside of the tree have no children and one or two data elements.

  7. Red–black tree - Wikipedia

    en.wikipedia.org/wiki/Red–black_tree

    The algorithms for bulk operations aren't just applicable to the red–black tree, but can be adapted to other sorted sequence data structures also, like the 2–3 tree, 2–3–4 tree and (a,b)-tree. In the following different algorithms for bulk insert will be explained, but the same algorithms can also be applied to removal and update.

  8. Bitmap index - Wikipedia

    en.wikipedia.org/wiki/Bitmap_index

    This implementation is a hybrid between the basic bitmap index (without compression) and the list of Row Identifiers (RID-list). Overall, the index is organized as a B+tree. When the column cardinality is low, each leaf node of the B-tree would contain long list of RIDs. In this case, it requires less space to represent the RID-lists as bitmaps.

  9. Van Emde Boas tree - Wikipedia

    en.wikipedia.org/wiki/Van_Emde_Boas_tree

    Deletion from vEB trees is the trickiest of the operations. The call Delete(T, x) that deletes a value x from a vEB tree T operates as follows: If T.min = T.max = x then x is the only element stored in the tree and we set T.min = M and T.max = −1 to indicate that the tree is empty.