Search results
Results from the WOW.Com Content Network
The most common convention is to name inverse trigonometric functions using an arc- prefix: arcsin(x), arccos(x), arctan(x), etc. [1] (This convention is used throughout this article.) This notation arises from the following geometric relationships: [ citation needed ] when measuring in radians, an angle of θ radians will correspond to an arc ...
Trigonometric functions and their reciprocals on the unit circle. All of the right-angled triangles are similar, i.e. the ratios between their corresponding sides are the same. For sin, cos and tan the unit-length radius forms the hypotenuse of the triangle that defines them.
for the definition of the principal values of the inverse hyperbolic tangent and cotangent. In these formulas, the argument of the logarithm is real if and only if z is real. For artanh, this argument is in the real interval (−∞, 0], if z belongs either to (−∞, −1] or to [1, ∞).
In mathematical writings other than source code, such as in books and articles, the notations Arctan [14] and Tan −1 [15] have been utilized; these are capitalized variants of the regular arctan and tan −1. This usage is consistent with the complex argument notation, such that Atan(y, x) = Arg(x + i y).
There are three common notations for inverse trigonometric functions. The arcsine function, for instance, could be written as sin −1, asin, or, as is used on this page, arcsin. For each inverse trigonometric integration formula below there is a corresponding formula in the list of integrals of inverse hyperbolic functions.
The derivative of arctan x is 1 / (1 + x 2); conversely, the integral of 1 / (1 + x 2) is arctan x.. If = then =. The derivative is = = + . Taking the reciprocal, = + = +.
Tan-1, TAN-1, tan-1, or tan −1 may refer to: tan −1 y = tan −1 ( x ), sometimes interpreted as arctan( x ) or arctangent of x , the compositional inverse of the trigonometric function tangent (see below for ambiguity)
For the sine function, we can handle other values. If θ > π /2, then θ > 1. But sin θ ≤ 1 (because of the Pythagorean identity), so sin θ < θ. So we have < <. For negative values of θ we have, by the symmetry of the sine function