enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Adomian decomposition method - Wikipedia

    en.wikipedia.org/wiki/Adomian_decomposition_method

    The Adomian decomposition method (ADM) is a semi-analytical method for solving ordinary and partial nonlinear differential equations.The method was developed from the 1970s to the 1990s by George Adomian, chair of the Center for Applied Mathematics at the University of Georgia. [1]

  3. Nonlinear system - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_system

    In mathematics and science, a nonlinear system (or a non-linear system) is a system in which the change of the output is not proportional to the change of the input. [1] [2] Nonlinear problems are of interest to engineers, biologists, [3] [4] [5] physicists, [6] [7] mathematicians, and many other scientists since most systems are inherently nonlinear in nature. [8]

  4. Numerical methods for ordinary differential equations

    en.wikipedia.org/wiki/Numerical_methods_for...

    Ernst Hairer, Syvert Paul Nørsett and Gerhard Wanner, Solving ordinary differential equations I: Nonstiff problems, second edition, Springer Verlag, Berlin, 1993. ISBN 3-540-56670-8. Ernst Hairer and Gerhard Wanner, Solving ordinary differential equations II: Stiff and differential-algebraic problems, second edition, Springer Verlag, Berlin, 1996.

  5. Power series solution of differential equations - Wikipedia

    en.wikipedia.org/wiki/Power_series_solution_of...

    The power series method can be applied to certain nonlinear differential equations, though with less flexibility. A very large class of nonlinear equations can be solved analytically by using the Parker–Sochacki method. Since the Parker–Sochacki method involves an expansion of the original system of ordinary differential equations through ...

  6. Change of variables - Wikipedia

    en.wikipedia.org/wiki/Change_of_variables

    are equivalent to Newton's equations for the function =, where T is the kinetic, and V the potential energy. In fact, when the substitution is chosen well (exploiting for example symmetries and constraints of the system) these equations are much easier to solve than Newton's equations in Cartesian coordinates.

  7. Relaxation (iterative method) - Wikipedia

    en.wikipedia.org/wiki/Relaxation_(iterative_method)

    Relaxation methods were developed for solving large sparse linear systems, which arose as finite-difference discretizations of differential equations. [2] [3] They are also used for the solution of linear equations for linear least-squares problems [4] and also for systems of linear inequalities, such as those arising in linear programming.

  8. Newton–Krylov method - Wikipedia

    en.wikipedia.org/wiki/Newton–Krylov_method

    Newton–Krylov methods are numerical methods for solving non-linear problems using Krylov subspace linear solvers. [1] [2] Generalising the Newton method to systems of multiple variables, the iteration formula includes a Jacobian matrix. Solving this directly would involve calculation of the Jacobian's inverse, when the Jacobian matrix itself ...

  9. Substitution (logic) - Wikipedia

    en.wikipedia.org/wiki/Substitution_(logic)

    A substitution is a syntactic transformation on formal expressions. ... y ↦ y 2 +4 } is non-linear and non-flat, { x ... especially in solving systems of equations, ...