enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. TK Solver - Wikipedia

    en.wikipedia.org/wiki/TK_Solver

    TK Solver has three ways of solving systems of equations. The "direct solver" solves a system algebraically by the principle of consecutive substitution. When multiple rules contain multiple unknowns, the program can trigger an iterative solver which uses the Newton–Raphson algorithm to successively approximate based on initial guesses for ...

  3. Tridiagonal matrix algorithm - Wikipedia

    en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm

    In other situations, the system of equations may be block tridiagonal (see block matrix), with smaller submatrices arranged as the individual elements in the above matrix system (e.g., the 2D Poisson problem). Simplified forms of Gaussian elimination have been developed for these situations. [6]

  4. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    For example, to solve a system of n equations for n unknowns by performing row operations on the matrix until it is in echelon form, and then solving for each unknown in reverse order, requires n(n + 1)/2 divisions, (2n 3 + 3n 2 − 5n)/6 multiplications, and (2n 3 + 3n 2 − 5n)/6 subtractions, [9] for a total of approximately 2n 3 /3 operations.

  5. System of linear equations - Wikipedia

    en.wikipedia.org/wiki/System_of_linear_equations

    Two linear systems using the same set of variables are equivalent if each of the equations in the second system can be derived algebraically from the equations in the first system, and vice versa. Two systems are equivalent if either both are inconsistent or each equation of each of them is a linear combination of the equations of the other one.

  6. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    The cost of solving a system of linear equations is approximately floating-point operations if the matrix has size . This makes it twice as fast as algorithms based on QR decomposition , which costs about 4 3 n 3 {\textstyle {\frac {4}{3}}n^{3}} floating-point operations when Householder reflections are used.

  7. Change of variables - Wikipedia

    en.wikipedia.org/wiki/Change_of_variables

    Change of variables is an operation that is related to substitution. However these are different operations, as can be seen when considering differentiation or integration (integration by substitution). A very simple example of a useful variable change can be seen in the problem of finding the roots of the sixth-degree polynomial:

  8. Successive over-relaxation - Wikipedia

    en.wikipedia.org/wiki/Successive_over-relaxation

    However, the formulation presented above, used for solving systems of linear equations, is not a special case of this formulation if x is considered to be the complete vector. If this formulation is used instead, the equation for calculating the next vector will look like

  9. System of polynomial equations - Wikipedia

    en.wikipedia.org/wiki/System_of_polynomial_equations

    For example, if a system contains , a system over the rational numbers is obtained by adding the equation r 2 2 – 2 = 0 and replacing by r 2 in the other equations. In the case of a finite field, the same transformation allows always supposing that the field k has a prime order.