enow.com Web Search

  1. Ad

    related to: stable vs unstable differential equations practice

Search results

  1. Results from the WOW.Com Content Network
  2. Stability theory - Wikipedia

    en.wikipedia.org/wiki/Stability_theory

    In mathematics, stability theory addresses the stability of solutions of differential equations and of trajectories of dynamical systems under small perturbations of initial conditions. The heat equation , for example, is a stable partial differential equation because small perturbations of initial data lead to small variations in temperature ...

  3. Linear stability - Wikipedia

    en.wikipedia.org/wiki/Linear_stability

    In mathematics, in the theory of differential equations and dynamical systems, a particular stationary or quasistationary solution to a nonlinear system is called linearly unstable if the linearization of the equation at this solution has the form / =, where r is the perturbation to the steady state, A is a linear operator whose spectrum contains eigenvalues with positive real part.

  4. Numerical stability - Wikipedia

    en.wikipedia.org/wiki/Numerical_stability

    The above definitions are particularly relevant in situations where truncation errors are not important. In other contexts, for instance when solving differential equations, a different definition of numerical stability is used. In numerical ordinary differential equations, various concepts of numerical stability exist, for instance A-stability.

  5. Von Neumann stability analysis - Wikipedia

    en.wikipedia.org/wiki/Von_Neumann_stability_analysis

    Equation gives the stability requirement for the FTCS scheme as applied to one-dimensional heat equation. It says that for a given , the allowed value of must be small enough to satisfy equation . Similar analysis shows that a FTCS scheme for linear advection is unconditionally unstable.

  6. Stable polynomial - Wikipedia

    en.wikipedia.org/wiki/Stable_polynomial

    Stable polynomials arise in control theory and in mathematical theory of differential and difference equations. A linear, time-invariant system (see LTI system theory) is said to be BIBO stable if every bounded input produces bounded output. A linear system is BIBO stable if its characteristic polynomial is stable.

  7. L-stability - Wikipedia

    en.wikipedia.org/wiki/L-stability

    Within mathematics regarding differential equations, L-stability is a special case of A-stability, a property of Runge–Kutta methods for solving ordinary differential equations. A method is L-stable if it is A-stable and () as , where is the stability function of the method (the stability function of a Runge–Kutta method is a rational ...

  8. Equilibrium point (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Equilibrium_point...

    If all eigenvalues have negative real parts, the point is stable. If at least one has a positive real part, the point is unstable. If at least one eigenvalue has negative real part and at least one has positive real part, the equilibrium is a saddle point and it is unstable.

  9. Lyapunov stability - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_stability

    More strongly, if is Lyapunov stable and all solutions that start out near converge to , then is said to be asymptotically stable (see asymptotic analysis). The notion of exponential stability guarantees a minimal rate of decay, i.e., an estimate of how quickly the solutions converge.

  1. Ad

    related to: stable vs unstable differential equations practice