enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Involutory matrix - Wikipedia

    en.wikipedia.org/wiki/Involutory_matrix

    I is the 3 × 3 identity matrix (which is trivially involutory); R is the 3 × 3 identity matrix with a pair of interchanged rows; S is a signature matrix. Any block-diagonal matrices constructed from involutory matrices will also be involutory, as a consequence of the linear independence of the blocks.

  3. Involution (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Involution_(mathematics)

    Any involution is a bijection.. The identity map is a trivial example of an involution. Examples of nontrivial involutions include negation (x ↦ −x), reciprocation (x ↦ 1/x), and complex conjugation (z ↦ z) in arithmetic; reflection, half-turn rotation, and circle inversion in geometry; complementation in set theory; and reciprocal ciphers such as the ROT13 transformation and the ...

  4. List of named matrices - Wikipedia

    en.wikipedia.org/wiki/List_of_named_matrices

    Involutory matrix: A square matrix which is its own inverse, i.e., AA = I. Signature matrices, Householder matrices (Also known as 'reflection matrices' to reflect a point about a plane or line) have this property. Isometric matrix: A matrix that preserves distances, i.e., a matrix that satisfies A * A = I where A * denotes the conjugate ...

  5. Affine involution - Wikipedia

    en.wikipedia.org/wiki/Affine_involution

    If A represents a linear involution, then x→A(x−b)+b is an affine involution. One can check that any affine involution in fact has this form. Geometrically this means that any affine involution can be obtained by taking oblique reflections against any number from 0 through n hyperplanes going through a point b.

  6. Householder transformation - Wikipedia

    en.wikipedia.org/wiki/Householder_transformation

    It follows rather readily (see orthogonal matrix) that any orthogonal matrix can be decomposed into a product of 2 by 2 rotations, called Givens Rotations, and Householder reflections. This is appealing intuitively since multiplication of a vector by an orthogonal matrix preserves the length of that vector, and rotations and reflections exhaust ...

  7. Exchange matrix - Wikipedia

    en.wikipedia.org/wiki/Exchange_matrix

    An exchange matrix is the simplest anti-diagonal matrix. Any matrix A satisfying the condition AJ = JA is said to be centrosymmetric. Any matrix A satisfying the condition AJ = JA T is said to be persymmetric. Symmetric matrices A that satisfy the condition AJ = JA are called bisymmetric matrices. Bisymmetric matrices are both centrosymmetric ...

  8. Free semigroup with involution - Wikipedia

    en.wikipedia.org/wiki/Semigroup_with_involution

    If S is a commutative semigroup then the identity map of S is an involution.; If S is a group then the inversion map * : S → S defined by x* = x −1 is an involution. Furthermore, on an abelian group both this map and the one from the previous example are involutions satisfying the axioms of semigroup with involution.

  9. Signature matrix - Wikipedia

    en.wikipedia.org/wiki/Signature_matrix

    Any such matrix is its own inverse, hence is an involutory matrix. It is consequently a square root of the identity matrix. Note however that not all square roots of the identity are signature matrices. Noting that signature matrices are both symmetric and involutory, they are thus orthogonal.