Search results
Results from the WOW.Com Content Network
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism , though usually most classify up to homotopy equivalence .
"A Concise Course in Algebraic Topology" (PDF). University of Chicago. May, J. Peter; Ponto, Kate. More Concise Algebraic Topology: Localization, completion, and model categories (PDF). University of Chicago Press. p. 215. ISBN 978-022651178-8 – via University of Edinburgh. Whitehead, George William (1978). Elements of homotopy theory ...
edit] * The base point of a based space. X + {\displaystyle X_{+}} For an unbased space X, X + is the based space obtained by adjoining a disjoint base point. A absolute neighborhood retract abstract 1. Abstract homotopy theory Adams 1. John Frank Adams. 2. The Adams spectral sequence. 3. The Adams conjecture. 4. The Adams e -invariant. 5. The Adams operations. Alexander duality Alexander ...
While this concept is too strict for some purposes in for example, homotopy theory, where "weak" structures arise in the form of higher categories, [2] strict cubical higher homotopy groupoids have also arisen as giving a new foundation for algebraic topology on the border between homology and homotopy theory; see the article Nonabelian ...
In algebraic topology, the Betti numbers are used to distinguish topological spaces based on the connectivity of n-dimensional simplicial complexes.For the most reasonable finite-dimensional spaces (such as compact manifolds, finite simplicial complexes or CW complexes), the sequence of Betti numbers is 0 from some point onward (Betti numbers vanish above the dimension of a space), and they ...
An example of a classifying space is that when G is cyclic of order two; then BG is real projective space of infinite dimension, corresponding to the observation that EG can be taken as the contractible space resulting from removing the origin in an infinite-dimensional Hilbert space, with G acting via v going to −v, and allowing for homotopy ...
Topology and geometry, Graduate Texts in Mathematics, Springer Verlag 1993, 1996; Davis, Donald. "Table of immersions and embeddings of real projective spaces" Hatcher, Allen (2001). Algebraic Topology. Cambridge University Press. ISBN 978-0-521-79160-1
24 Number Theory: Algebraic Numbers and Functions, Helmut Koch (2000, ISBN 978-0-8218-2054-4) 25 Dirac Operators in Riemannian Geometry , Thomas Friedrich (2000, ISBN 978-0-8218-2055-1 ) 26 An Introduction to Symplectic Geometry , Rolf Berndt (2001, ISBN 978-0-8218-2056-8 )