Search results
Results from the WOW.Com Content Network
An ASH 31 glider with very high aspect ratio (AR=33.5) and lift-to-drag ratio (L/D=56) In aeronautics, the aspect ratio of a wing is the ratio of its span to its mean chord. It is equal to the square of the wingspan divided by the wing area. Thus, a long, narrow wing has a high aspect ratio, whereas a short, wide wing has a low aspect ratio. [1]
The ratio of the length (or span) of a rectangular-planform wing to its chord is known as the aspect ratio, an important indicator of the lift-induced drag the wing will create. [7] (For wings with planforms that are not rectangular, the aspect ratio is calculated as the square of the span divided by the wing planform area.)
For example, the NACA 2412 airfoil has a maximum camber of 2% located 40% (0.4 chords) from the leading edge with a maximum thickness of 12% of the chord. The NACA 0015 airfoil is symmetrical, the 00 indicating that it has no camber. The 15 indicates that the airfoil has a 15% thickness to chord length ratio: it is 15% as thick as it is long.
The natural outcome of this requirement is a wing design that is thin and wide, which has a low thickness-to-chord ratio. At lower speeds, undesirable parasitic drag is largely a function of the total surface area, which suggests using a wing with minimum chord, leading to the high aspect ratios seen on light aircraft and regional airliners ...
In an airfoil, the mean line curvature is designed to change the flow direction, the vane thickness is for strength and the streamlined shape is to delay the onset of boundary layer separation. Taking all the design factors of an airfoil , the resulting forces of lift and drag can be expressed in terms of lift and drag coefficient.
A high aspect ratio indicates a long, narrow sail, whereas a low aspect ratio indicates a short, wide sail. [39] For most sails, the length of the chord is not a constant but varies along the wing, so the aspect ratio AR is defined as the square of the sail height b divided by the area A of the sail planform: [3] [30]
In aerodynamics, the lift-to-drag ratio (or L/D ratio) is the lift generated by an aerodynamic body such as an aerofoil or aircraft, divided by the aerodynamic drag caused by moving through air. It describes the aerodynamic efficiency under given flight conditions. The L/D ratio for any given body will vary according to these flight conditions.
A design approach used by Burt Rutan is a high aspect ratio canard with higher lift coefficient (the wing loading of the canard is between 1.6 and 2 times the wing one) and a canard airfoil whose lift coefficient slope is non-linear (nearly flat) between 14° and 24°. [36] Another stabilisation parameter is the power effect.