Search results
Results from the WOW.Com Content Network
Any series of 4 distinct points can be converted to a cubic Bézier curve that goes through all 4 points in order. Given the starting and ending point of some cubic Bézier curve, and the points along the curve corresponding to t = 1/3 and t = 2/3, the control points for the original Bézier curve can be recovered. [9]
The chord function can be related to the modern sine function, by taking one of the points to be (1,0), and the other point to be (cos θ, sin θ), and then using the Pythagorean theorem to calculate the chord length: [2]
This arc is the shortest path between the two points on the surface of the sphere. (By comparison, the shortest path passing through the sphere's interior is the chord between the points.) On a curved surface, the concept of straight lines is replaced by a more general concept of geodesics, curves which are locally straight with respect to the ...
The formula for calculating it can be derived and expressed in several ways. Knowing the shortest distance from a point to a line can be useful in various situations—for example, finding the shortest distance to reach a road, quantifying the scatter on a graph, etc.
Given the two red points, the blue line is the linear interpolant between the points, and the value y at x may be found by linear interpolation.. In mathematics, linear interpolation is a method of curve fitting using linear polynomials to construct new data points within the range of a discrete set of known data points.
"The spiral itself is not drawn: we see it as the locus of points where the circles are especially close to each other." [1] An osculating circle is a circle that best approximates the curvature of a curve at a specific point. It is tangent to the curve at that point and has the same curvature as the curve at that point. [2]
The locus of points such that the sum of the squares of the distances to the given points is constant is a circle, whose centre is at the centroid of the given points. [22] A generalisation for higher powers of distances is obtained if under n {\displaystyle n} points the vertices of the regular polygon P n {\displaystyle P_{n}} are taken. [ 23 ]
Taking an example, the area under the curve y = x 2 over [0, 2] can be procedurally computed using Riemann's method. The interval [0, 2] is firstly divided into n subintervals, each of which is given a width of 2 n {\displaystyle {\tfrac {2}{n}}} ; these are the widths of the Riemann rectangles (hereafter "boxes").