Search results
Results from the WOW.Com Content Network
The curve is named after Edwin Catmull and Raphael Rom. The principal advantage of this technique is that the points along the original set of points also make up the control points for the spline curve. [7] Two additional points are required on either end of the curve. The uniform Catmull–Rom implementation can produce loops and self ...
Triple knots at both ends of the interval ensure that the curve interpolates the end points In mathematics , a spline is a function defined piecewise by polynomials . In interpolating problems, spline interpolation is often preferred to polynomial interpolation because it yields similar results, even when using low degree polynomials, while ...
Low-order polynomials tend to be smooth and high order polynomial curves tend to be "lumpy". To define this more precisely, the maximum number of inflection points possible in a polynomial curve is n-2, where n is the order of the polynomial equation. An inflection point is a location on the curve where it switches from a positive radius to ...
If the curve passes through the origin then determine the tangent lines there. For algebraic curves, this can be done by removing all but the terms of lowest order from the equation and solving. Similarly, removing all but the terms of highest order from the equation and solving gives the points where the curve meets the line at infinity.
Any series of 4 distinct points can be converted to a cubic Bézier curve that goes through all 4 points in order. Given the starting and ending point of some cubic Bézier curve, and the points along the curve corresponding to t = 1/3 and t = 2/3, the control points for the original Bézier curve can be recovered. [9]
Originally, spline was a term for elastic rulers that were bent to pass through a number of predefined points, or knots. These were used to make technical drawings for shipbuilding and construction by hand, as illustrated in the figure. We wish to model similar kinds of curves using a set of mathematical equations.
If the horizontal cross-section moves up or down, toward or away from the apex of the cone, D and E move along the parabola, always maintaining the relationship between x and y shown in the equation. The parabolic curve is therefore the locus of points where the equation is satisfied, which makes it a Cartesian graph of the quadratic function ...
The points of a curve C with coordinates in a field G are said to be rational over G and can be denoted C(G). When G is the field of the rational numbers, one simply talks of rational points. For example, Fermat's Last Theorem may be restated as: For n > 2, every rational point of the Fermat curve of degree n has a zero coordinate.