Search results
Results from the WOW.Com Content Network
CAOS aims to identify a series of chemical reactions which, from a starting compound, can produce a desired molecule. CAOS algorithms typically use two databases: a first one of known chemical reactions and a second one of known starting materials (i.e., typically molecules available commercially). Desirable synthetic plans cost less, have high ...
Example is here. On the right side (from ionic to covalent) should be compounds with varying difference in electronegativity. The compounds with equal electronegativity, such as Cl 2 are placed in the covalent corner, while the ionic corner has compounds with large electronegativity difference, such as NaCl (table salt). The bottom side (from ...
These are four valence bond structures that can contribute to the VBT description of bonding in a hydrogen molecule. The Heitler-London (covalent) structure is the largest contributor, while the ionic structures are minor contributors. The triplet structure is a negligible contributor.
This extends the scope of the ionic model well beyond compounds in which the bonding would normally be considered as "ionic". For example, methane, CH 4, obeys the conditions for the ionic model with carbon as the cation and hydrogen as the anion (or vice versa, since carbon and hydrogen have the same electronegativity).
Furthermore, the Ge–Ge bond is primarily covalent, whereas the Ge–M bond usually has an equal mix of covalent and ionic nature. Exceptions to this are Cr, Mn, and Cu, where the ionic component is dominant because of smaller overlap with the 4s orbital of the M atom, leading to less stability. [ 19 ]
From the view point of a formal language theory, SMILES is a word. A SMILES is parsable with a context-free parser. The use of this representation has been in the prediction of biochemical properties (incl. toxicity and biodegradability ) based on the main principle of chemoinformatics that similar molecules have similar properties.
ionic counting: Fe(0) contributes 8 electrons, each CO contributes 2 each: 8 + 2 × 5 = 18 valence electrons conclusions: this is a special case, where ionic counting is the same as neutral counting, all fragments being neutral. Since this is an 18-electron complex, it is expected to be isolable compound. Ferrocene, (C 5 H 5) 2 Fe, for the ...
In inorganic chemistry, Fajans' rules, formulated by Kazimierz Fajans in 1923, [1] [2] [3] are used to predict whether a chemical bond will be covalent or ionic, and depend on the charge on the cation and the relative sizes of the cation and anion. They can be summarized in the following table: