enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Binomial theorem - Wikipedia

    en.wikipedia.org/wiki/Binomial_theorem

    In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power ⁠ (+) ⁠ expands into a polynomial with terms of the form ⁠ ⁠, where the exponents ⁠ ⁠ and ⁠ ⁠ are nonnegative integers satisfying ⁠ + = ⁠ and the coefficient ⁠ ⁠ of each term is a specific positive integer ...

  3. Lucas's theorem - Wikipedia

    en.wikipedia.org/wiki/Lucas's_theorem

    Lucas's theorem can be generalized to give an expression for the remainder when () is divided by a prime power p k.However, the formulas become more complicated. If the modulo is the square of a prime p, the following congruence relation holds for all 0 ≤ s ≤ r ≤ p − 1, a ≥ 0, and b ≥ 0.

  4. Binomial series - Wikipedia

    en.wikipedia.org/wiki/Binomial_series

    Differentiating term-wise the binomial series within the disk of convergence | x | < 1 and using formula , one has that the sum of the series is an analytic function solving the ordinary differential equation (1 + x)u′(x) − αu(x) = 0 with initial condition u(0) = 1. The unique solution of this problem is the function u(x) = (1 + x) α.

  5. Pascal's triangle - Wikipedia

    en.wikipedia.org/wiki/Pascal's_triangle

    In mathematics, Pascal's triangle is an infinite triangular array of the binomial coefficients which play a crucial role in probability theory, combinatorics, and algebra.In much of the Western world, it is named after the French mathematician Blaise Pascal, although other mathematicians studied it centuries before him in Persia, [1] India, [2] China, Germany, and Italy.

  6. Hockey-stick identity - Wikipedia

    en.wikipedia.org/wiki/Hockey-stick_identity

    Pascal's triangle, rows 0 through 7. The hockey stick identity confirms, for example: for n=6, r=2: 1+3+6+10+15=35.. In combinatorics, the hockey-stick identity, [1] Christmas stocking identity, [2] boomerang identity, Fermat's identity or Chu's Theorem, [3] states that if are integers, then

  7. Pascal's pyramid - Wikipedia

    en.wikipedia.org/wiki/Pascal's_pyramid

    Pascal's pyramid is the three-dimensional analog of the two-dimensional Pascal's triangle, which contains the binomial numbers and relates to the binomial expansion and the binomial distribution. The binomial and trinomial numbers, coefficients, expansions, and distributions are subsets of the multinomial constructs with the same names.

  8. Additional Mathematics - Wikipedia

    en.wikipedia.org/wiki/Additional_Mathematics

    The syllabus covered is more in-depth as compared to Elementary Mathematics, with additional topics including Algebra binomial expansion, proofs in plane geometry, differential calculus and integral calculus. [2]

  9. Binomial (polynomial) - Wikipedia

    en.wikipedia.org/wiki/Binomial_(polynomial)

    A binomial is a polynomial which is the sum of two monomials. A binomial in a single indeterminate (also known as a univariate binomial) can be written in the form , where a and b are numbers, and m and n are distinct non-negative integers and x is a symbol which is called an indeterminate or, for historical reasons, a variable.