enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Direct sum - Wikipedia

    en.wikipedia.org/wiki/Direct_sum

    The direct sum is also commutative up to isomorphism, i.e. for any algebraic structures and of the same kind. The direct sum of finitely many abelian groups, vector spaces, or modules is canonically isomorphic to the corresponding direct product. This is false, however, for some algebraic objects, like nonabelian groups.

  3. Direct sum of modules - Wikipedia

    en.wikipedia.org/wiki/Direct_sum_of_modules

    The subspace V × {0} of VW is isomorphic to V and is often identified with V; similarly for {0} × W and W. (See internal direct sum below.) With this identification, every element of VW can be written in one and only one way as the sum of an element of V and an element of W. The dimension of VW is equal to the sum of the ...

  4. Glossary of mathematical symbols - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_mathematical...

    This applies also when E and F are linear subspaces or submodules of the vector space or module V. 2. Direct sum: if E and F are two abelian groups, vector spaces, or modules, then their direct sum, denoted is an abelian group, vector space, or module (respectively) equipped with two monomorphisms: and : such that is the internal direct sum of ...

  5. Representation theory - Wikipedia

    en.wikipedia.org/wiki/Representation_theory

    If (V,φ) and (W,ψ) are representations of (say) a group G, then the direct sum of V and W is a representation, in a canonical way, via the equation (,) = (,). The direct sum of two representations carries no more information about the group G than the two representations do individually. If a representation is the direct sum of two proper ...

  6. Symmetric algebra - Wikipedia

    en.wikipedia.org/wiki/Symmetric_algebra

    The symmetric tensors of degree n form a vector subspace (or module) Sym n (V) ⊂ T n (V). The symmetric tensors are the elements of the direct sum = ⁡ (), which is a graded vector space (or a graded module). It is not an algebra, as the tensor product of two symmetric tensors is not symmetric in general.

  7. Vector space - Wikipedia

    en.wikipedia.org/wiki/Vector_space

    The binary operation, called vector addition or simply addition assigns to any two vectors v and w in V a third vector in V which is commonly written as v + w, and called the sum of these two vectors. The binary function, called scalar multiplication, assigns to any scalar a in F and any vector v in V another vector in V, which is denoted av ...

  8. Weight (representation theory) - Wikipedia

    en.wikipedia.org/wiki/Weight_(representation_theory)

    If V is the direct sum of its weight spaces V = ⨁ λ ∈ h ∗ V λ {\displaystyle V=\bigoplus _{\lambda \in {\mathfrak {h}}^{*}}V_{\lambda }} then V is called a weight module ; this corresponds to there being a common eigenbasis (a basis of simultaneous eigenvectors) for all the represented elements of the algebra, i.e., to there being ...

  9. Quiver (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Quiver_(mathematics)

    Quivers are commonly used in representation theory: a representation V of a quiver assigns a vector space V(x) to each vertex x of the quiver and a linear map V(a) to each arrow a. In category theory, a quiver can be understood to be the underlying structure of a category, but without composition or a designation of identity morphisms.