enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Golden ratio - Wikipedia

    en.wikipedia.org/wiki/Golden_ratio

    The golden ratio φ and its negative reciprocal −φ −1 are the two roots of the quadratic polynomial x 2 − x − 1. The golden ratio's negative −φ and reciprocal φ −1 are the two roots of the quadratic polynomial x 2 + x − 1. The golden ratio is also an algebraic number and even an algebraic integer.

  3. Golden triangle (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Golden_triangle_(mathematics)

    A golden triangle. The ratio a/b is the golden ratio φ. The vertex angle is =.Base angles are 72° each. Golden gnomon, having side lengths 1, 1, and .. A golden triangle, also called a sublime triangle, [1] is an isosceles triangle in which the duplicated side is in the golden ratio to the base side:

  4. Irrational number - Wikipedia

    en.wikipedia.org/wiki/Irrational_number

    Among irrational numbers are the ratio π of a circle's circumference to its diameter, Euler's number e, the golden ratio φ, and the square root of two. [1] In fact, all square roots of natural numbers , other than of perfect squares , are irrational.

  5. Golden angle - Wikipedia

    en.wikipedia.org/wiki/Golden_angle

    The golden angle is the angle subtended by the smaller (red) arc when two arcs that make up a circle are in the golden ratio. In geometry, the golden angle is the smaller of the two angles created by sectioning the circumference of a circle according to the golden ratio; that is, into two arcs such that the ratio of the length of the smaller arc to the length of the larger arc is the same as ...

  6. Is the Golden Ratio the Missing Piece in Your Financial Plan?

    www.aol.com/using-golden-ratio-finance-203347825...

    The golden ratio budget echoes the more widely known 50-30-20 budget that recommends spending 50% of your income on needs, 30% on wants and 20% on savings and debt. The “needs” category covers ...

  7. Golden rectangle - Wikipedia

    en.wikipedia.org/wiki/Golden_rectangle

    In geometry, a golden rectangle is a rectangle with side lengths in golden ratio +:, or ⁠:, ⁠ with ⁠ ⁠ approximately equal to 1.618 or 89/55. Golden rectangles exhibit a special form of self-similarity : if a square is added to the long side, or removed from the short side, the result is a golden rectangle as well.

  8. NYT ‘Connections’ Hints and Answers Today, Friday, December 13

    www.aol.com/nyt-connections-hints-answers-today...

    If you've been having trouble with any of the connections or words in Friday's puzzle, you're not alone and these hints should definitely help you out. Plus, I'll reveal the answers further down ...

  9. Kepler triangle - Wikipedia

    en.wikipedia.org/wiki/Kepler_triangle

    The ratio of the progression of side lengths is , where = (+) / is the golden ratio, and the progression can be written: ::, or approximately 1 : 1.272 : 1.618. Squares on the edges of this triangle have areas in another geometric progression, 1 : φ : φ 2 {\displaystyle 1:\varphi :\varphi ^{2}} .