enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quintic function - Wikipedia

    en.wikipedia.org/wiki/Quintic_function

    Even for the first root that involves at most two square roots, the expression of the solutions in terms of radicals is usually highly complicated. However, when no square root is needed, the form of the first solution may be rather simple, as for the equation x 5 − 5 x 4 + 30 x 3 − 50 x 2 + 55 x − 21 = 0 , for which the only real solution is

  3. Galois theory - Wikipedia

    en.wikipedia.org/wiki/Galois_theory

    A further step was the 1770 paper Réflexions sur la résolution algébrique des équations by the French-Italian mathematician Joseph Louis Lagrange, in his method of Lagrange resolvents, where he analyzed Cardano's and Ferrari's solution of cubics and quartics by considering them in terms of permutations of the roots, which yielded an ...

  4. Chromatic polynomial - Wikipedia

    en.wikipedia.org/wiki/Chromatic_polynomial

    A root (or zero) of a chromatic polynomial, called a “chromatic root”, is a value x where (,) =. Chromatic roots have been very well studied, in fact, Birkhoff’s original motivation for defining the chromatic polynomial was to show that for planar graphs, P ( G , x ) > 0 {\displaystyle P(G,x)>0} for x ≥ 4.

  5. Root of unity - Wikipedia

    en.wikipedia.org/wiki/Root_of_unity

    The n th roots of unity are, by definition, the roots of the polynomial x n − 1, and are thus algebraic numbers. As this polynomial is not irreducible (except for n = 1), the primitive n th roots of unity are roots of an irreducible polynomial (over the integers) of lower degree, called the n th cyclotomic polynomial, and often denoted Φ n.

  6. Primitive root modulo n - Wikipedia

    en.wikipedia.org/wiki/Primitive_root_modulo_n

    Such a value k is called the index or discrete logarithm of a to the base g modulo n. So g is a primitive root modulo n if and only if g is a generator of the multiplicative group of integers modulo n. Gauss defined primitive roots in Article 57 of the Disquisitiones Arithmeticae (1801), where he credited Euler with coining the term.

  7. Characteristic equation (calculus) - Wikipedia

    en.wikipedia.org/wiki/Characteristic_equation...

    If the characteristic equation has a root r 1 that is repeated k times, then it is clear that y p (x) = c 1 e r 1 x is at least one solution. [1] However, this solution lacks linearly independent solutions from the other k − 1 roots. Since r 1 has multiplicity k, the differential equation can be factored into [1]

  8. Radical extension - Wikipedia

    en.wikipedia.org/wiki/Radical_extension

    Radical extensions occur naturally when solving polynomial equations in radicals.In fact a solution in radicals is the expression of the solution as an element of a radical series: a polynomial f over a field K is said to be solvable by radicals if there is a splitting field of f over K contained in a radical extension of K.

  9. Outline of discrete mathematics - Wikipedia

    en.wikipedia.org/.../Outline_of_discrete_mathematics

    Discrete mathematics is the study of mathematical structures that are fundamentally discrete rather than continuous.In contrast to real numbers that have the property of varying "smoothly", the objects studied in discrete mathematics – such as integers, graphs, and statements in logic [1] – do not vary smoothly in this way, but have distinct, separated values. [2]