Search results
Results from the WOW.Com Content Network
A space curve is a curve for which is at least three-dimensional; a skew curve is a space curve which lies in no plane. These definitions of plane, space and skew curves apply also to real algebraic curves , although the above definition of a curve does not apply (a real algebraic curve may be disconnected ).
Curvature of Riemannian manifolds of dimension at least two can be defined intrinsically without reference to a larger space. For curves, the canonical example is that of a circle, which has a curvature equal to the reciprocal of its radius. Smaller circles bend more sharply, and hence have higher curvature.
The surface of a sphere can be completely described by two dimensions, since no matter how rough the surface may appear to be, it is still only a surface, which is the two-dimensional outside border of a volume. Even the surface of the Earth, which is fractal in complexity, is still only a two-dimensional boundary along the outside of a volume. [3]
The inductive dimension of a topological space may refer to the small inductive dimension or the large inductive dimension, and is based on the analogy that, in the case of metric spaces, (n + 1)-dimensional balls have n-dimensional boundaries, permitting an inductive definition based on the dimension of the boundaries of open sets. Moreover ...
See also List of fractals by Hausdorff dimension ... Dose–response curve; Growth curve (biology) ... An elementary treatise on cubic and quartic curves by ...
The dimension of the manifold at a certain point is the dimension of the Euclidean space that the charts at that point map to (number n in the definition). All points in a connected manifold have the same dimension. Some authors require that all charts of a topological manifold map to Euclidean spaces of same dimension.
In differential geometry, the fundamental theorem of space curves states that every regular curve in three-dimensional space, with non-zero curvature, has its shape (and size or scale) completely determined by its curvature and torsion.
A space curve; the vectors T, N, B; and the osculating plane spanned by T and N. In differential geometry, the Frenet–Serret formulas describe the kinematic properties of a particle moving along a differentiable curve in three-dimensional Euclidean space, or the geometric properties of the curve itself irrespective of any motion.