Search results
Results from the WOW.Com Content Network
The Antoine equation is a class of semi-empirical correlations describing the relation between vapor pressure and temperature for pure ... (experimental data for Benzene)
For benzene with T c = 562.12 K [3] P c = 4898 kPa [3] ... Antoine equation; Tetens equation; Arden Buck equation; Goff–Gratch equation; References This page was ...
The Antoine equation [3] [4] is a pragmatic mathematical expression of the relation between the vapor pressure and the temperature of pure liquid or solid substances. It is obtained by curve-fitting and is adapted to the fact that vapor pressure is usually increasing and concave as a function of temperature. The basic form of the equation is:
The Dortmund Data Bank [1] (short DDB) is a factual data bank for thermodynamic and thermophysical data. Its main usage is the data supply for process simulation where experimental data are the basis for the design, analysis, synthesis, and optimization of chemical processes.
*** Benzene is a carcinogen (cancer-causing agent). *** Very flammable. The pure material, and any solutions containing it, constitute a fire risk. Safe handling: Benzene should NOT be used at all unless no safer alternatives are available. If benzene must be used in an experiment, it should be handled at all stages in a fume cupboard.
VLE of the mixture of chloroform and methanol plus NRTL fit and extrapolation to different pressures. The non-random two-liquid model [1] (abbreviated NRTL model) is an activity coefficient model introduced by Renon and Prausnitz in 1968 that correlates the activity coefficients of a compound with its mole fractions in the liquid phase concerned.
Benzene is a natural constituent of petroleum and is one of the elementary petrochemicals. Due to the cyclic continuous pi bonds between the carbon atoms, benzene is classed as an aromatic hydrocarbon. Benzene is a colorless and highly flammable liquid with a sweet smell, and is partially responsible for the aroma of gasoline.
The reaction was first used by Antoine Béchamp to reduce nitronaphthalene and nitrobenzene to naphthylamine and aniline, respectively. [3] The Béchamp reduction is broadly applicable to aromatic nitro compounds. [4] [5] Aliphatic nitro compounds are however more difficult to reduce, often remaining as the hydroxylamine. Tertiary aliphatic ...