Search results
Results from the WOW.Com Content Network
In analytic geometry, an asymptote (/ ˈ æ s ɪ m p t oʊ t /) of a curve is a line such that the distance between the curve and the line approaches zero as one or both of the x or y coordinates tends to infinity. In projective geometry and related contexts, an asymptote of a curve is a line which is tangent to the curve at a point at infinity ...
The distance (or perpendicular distance) from a point to a line is the shortest distance from a fixed point to any point on a fixed infinite line in Euclidean geometry. It is the length of the line segment which joins the point to the line and is perpendicular to the line. The formula for calculating it can be derived and expressed in several ways.
The asymptotic directions are the same as the asymptotes of the hyperbola of the Dupin indicatrix through a hyperbolic point, or the unique asymptote through a parabolic point. [ 1 ] An asymptotic direction is a direction along which the normal curvature is zero: take the plane spanned by the direction and the surface's normal at that point.
A line will connect any two points, so a first degree polynomial equation is an exact fit through any two points with distinct x coordinates. If the order of the equation is increased to a second degree polynomial, the following results: = + +. This will exactly fit a simple curve to three points.
Given the two red points, the blue line is the linear interpolant between the points, and the value y at x may be found by linear interpolation. In mathematics, linear interpolation is a method of curve fitting using linear polynomials to construct new data points within the range of a discrete set of known data points.
A ray with a terminus at A, with two points B and C on the right. Given a line and any point A on it, we may consider A as decomposing this line into two parts. Each such part is called a ray and the point A is called its initial point. It is also known as half-line, a one-dimensional half-space. The point A is considered to be a member of the ray.
A simple example of such a problem is to find the curve of shortest length connecting two points. If there are no constraints, the solution is a straight line between the points. However, if the curve is constrained to lie on a surface in space, then the solution is less obvious, and possibly many solutions may exist.
The essential property of the tractrix is constancy of the distance between a point P on the curve and the intersection of the tangent line at P with the asymptote of the curve. The tractrix might be regarded in a multitude of ways: It is the locus of the center of a hyperbolic spiral rolling (without skidding) on a straight line.