enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Zermelo–Fraenkel set theory - Wikipedia

    en.wikipedia.org/wiki/Zermelo–Fraenkel_set_theory

    Von Neumann–Bernays–Gödel set theory (NBG) is a commonly used conservative extension of Zermelo–Fraenkel set theory that does allow explicit treatment of proper classes. There are many equivalent formulations of the axioms of Zermelo–Fraenkel set theory. Most of the axioms state the existence of particular sets defined from other sets.

  3. Zermelo set theory - Wikipedia

    en.wikipedia.org/wiki/Zermelo_set_theory

    The axioms of Zermelo set theory are stated for objects, some of which (but not necessarily all) are sets, and the remaining objects are urelements and not sets. Zermelo's language implicitly includes a membership relation ∈, an equality relation = (if it is not included in the underlying logic), and a unary predicate saying whether an object is a set.

  4. Set theory - Wikipedia

    en.wikipedia.org/wiki/Set_theory

    Set theory as a foundation for mathematical analysis, topology, abstract algebra, and discrete mathematics is likewise uncontroversial; mathematicians accept (in principle) that theorems in these areas can be derived from the relevant definitions and the axioms of set theory. However, it remains that few full derivations of complex mathematical ...

  5. List of axioms - Wikipedia

    en.wikipedia.org/wiki/List_of_axioms

    Together with the axiom of choice (see below), these are the de facto standard axioms for contemporary mathematics or set theory. They can be easily adapted to analogous theories, such as mereology. Axiom of extensionality; Axiom of empty set; Axiom of pairing; Axiom of union; Axiom of infinity; Axiom schema of replacement; Axiom of power set ...

  6. Von Neumann–Bernays–Gödel set theory - Wikipedia

    en.wikipedia.org/wiki/Von_Neumann–Bernays...

    Classes have several uses in NBG: They produce a finite axiomatization of set theory. [4]They are used to state a "very strong form of the axiom of choice" [5] —namely, the axiom of global choice: There exists a global choice function defined on the class of all nonempty sets such that () for every nonempty set .

  7. Category:Axioms of set theory - Wikipedia

    en.wikipedia.org/wiki/Category:Axioms_of_set_theory

    This category is for axioms in the language of set theory; roughly speaking, ones that "talk about sets".Inclusion in this category does not necessarily imply that the axiom in question is an accepted axiom, or that it is believed to be true in the von Neumann universe of sets.

  8. Axiom of extensionality - Wikipedia

    en.wikipedia.org/wiki/Axiom_of_extensionality

    The axiom of extensionality, [1] [2] also called the axiom of extent, [3] [4] is an axiom used in many forms of axiomatic set theory, such as Zermelo–Fraenkel set theory. [5] [6] The axiom defines what a set is. [1] Informally, the axiom means that the two sets A and B are equal if and only if A and B have the same members.

  9. Axiom of regularity - Wikipedia

    en.wikipedia.org/wiki/Axiom_of_regularity

    Given the other axioms of Zermelo–Fraenkel set theory, the axiom of regularity is equivalent to the axiom of induction. The axiom of induction tends to be used in place of the axiom of regularity in intuitionistic theories (ones that do not accept the law of the excluded middle), where the two axioms are not equivalent.