Search results
Results from the WOW.Com Content Network
A typical operon. In genetics, an operon is a functioning unit of DNA containing a cluster of genes under the control of a single promoter. [1] The genes are transcribed together into an mRNA strand and either translated together in the cytoplasm, or undergo splicing to create monocistronic mRNAs that are translated separately, i.e. several strands of mRNA that each encode a single gene product.
The catabolite activator protein (CAP), otherwise known as cAMP receptor protein (CRP), activates transcription at the lac operon of the bacterium Escherichia coli. [5] Cyclic adenosine monophosphate (cAMP) is produced during glucose starvation; this molecule acts as an allosteric effector that binds to CAP and causes a conformational change ...
The lacZYA operon houses genes encoding proteins needed for lactose breakdown. [2] The lacI gene codes for a protein called "the repressor" or "the lac repressor", which functions to repressor of the lac operon. [2] The gene lacI is situated immediately upstream of lacZYA but is transcribed from a lacI promoter. [2]
The lac operon in the prokaryote E. coli consists of genes that produce enzymes to break down lactose. Its operon is an example of a prokaryotic silencer. The three functional genes in this operon are lacZ, lacY, and lacA. [6] The repressor gene, lacI, will produce the repressor protein LacI which is under allosteric regulation.
The gene is expressed because an inducer binds to the repressor. The binding of the inducer to the repressor prevents the repressor from binding to the operator. RNA polymerase can then begin to transcribe operon genes. By binding to activators. Activators generally bind poorly to activator DNA sequences unless an inducer is
The repressor will then bind to the operator, stopping the manufacture of lactase. In genetics , a promoter is a sequence of DNA to which proteins bind to initiate transcription of a single RNA transcript from the DNA downstream of the promoter.
In prokaryotes, the term corepressor is used to denote the activating ligand of a repressor protein. For example, the E. coli tryptophan repressor (TrpR) is only able to bind to DNA and repress transcription of the trp operon when its corepressor tryptophan is bound to it.
The L-arabinose operon, also called the ara or araBAD operon, is an operon required for the breakdown of the five-carbon sugar L-arabinose in Escherichia coli. [1] The L-arabinose operon contains three structural genes: araB, araA, araD (collectively known as araBAD), which encode for three metabolic enzymes that are required for the metabolism of L-arabinose. [2]