enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Standard electrode potential (data page) - Wikipedia

    en.wikipedia.org/wiki/Standard_electrode...

    For example, from Fe 2+ + 2 e − ⇌ Fe(s) (–0.44 V), the energy to form one neutral atom of Fe(s) from one Fe 2+ ion and two electrons is 2 × 0.44 eV = 0.88 eV, or 84 907 J/(mol e −). That value is also the standard formation energy (∆ G f °) for an Fe 2+ ion, since e − and Fe( s ) both have zero formation energy.

  3. Electrode potential - Wikipedia

    en.wikipedia.org/wiki/Electrode_potential

    To avoid possible ambiguities, the electrode potential thus defined can also be referred to as Gibbs–Stockholm electrode potential. In both conventions, the standard hydrogen electrode is defined to have a potential of 0 V. Both conventions also agree on the sign of E for a half-cell reaction when it is written as a reduction.

  4. Latimer diagram - Wikipedia

    en.wikipedia.org/wiki/Latimer_diagram

    For example, for oxygen, the species would be in the order O 2 (0), H 2 O 2 (–1), H 2 O (-2): The arrow between O 2 and H 2 O 2 has a value +0.68 V over it, it indicates that the standard electrode potential for the reaction: O 2 (g) + 2 H + + 2 e − ⇄ H 2 O 2 (aq) is 0.68 volts.

  5. Standard electrode potential - Wikipedia

    en.wikipedia.org/wiki/Standard_electrode_potential

    Bipolar electrochemistry scheme. In electrochemistry, standard electrode potential, or , is a measure of the reducing power of any element or compound.The IUPAC "Gold Book" defines it as; "the value of the standard emf (electromotive force) of a cell in which molecular hydrogen under standard pressure is oxidized to solvated protons at the left-hand electrode".

  6. Table of standard electrode potentials - Wikipedia

    en.wikipedia.org/?title=Table_of_standard...

    From Wikipedia, the free encyclopedia. Redirect page. Redirect to: Standard electrode potential (data page)

  7. Point of zero charge - Wikipedia

    en.wikipedia.org/wiki/Point_of_zero_charge

    E pzc = E − E σ=0. where: E pzc is the electrode potential difference with respect to the point of zero charge, E σ=0; E is the potential of the same electrode against a defined reference electrode in volts; E σ=0 is the potential of the same electrode when the surface charge is zero, in the absence of specific adsorption other than that ...

  8. Electrochemical window - Wikipedia

    en.wikipedia.org/wiki/Electrochemical_window

    The electrochemical window (EW) is an important concept in organic electrosynthesis and design of batteries, especially organic batteries. [5] This is because at higher voltage (greater than 4.0 V) organic electrolytes decompose and interferes with the oxidation and reduction of the organic cathode/anode materials.

  9. Ionization energies of the elements (data page) - Wikipedia

    en.wikipedia.org/wiki/Ionization_energies_of_the...

    For each atom, the column marked 1 is the first ionization energy to ionize the neutral atom, the column marked 2 is the second ionization energy to remove a second electron from the +1 ion, the column marked 3 is the third ionization energy to remove a third electron from the +2 ion, and so on.