Search results
Results from the WOW.Com Content Network
The names "lambda abstraction", "lambda function", and "lambda expression" refer to the notation of function abstraction in lambda calculus, where the usual function f (x) = M would be written (λx. M), and where M is an expression that uses x. Compare to the Python syntax of lambda x: M.
In Python, functions are first-class objects that can be created and passed around dynamically. Python's limited support for anonymous functions is the lambda construct. An example is the anonymous function which squares its input, called with the argument of 5:
In computer programming, apply applies a function to a list of arguments. Eval and apply are the two interdependent components of the eval-apply cycle, which is the essence of evaluating Lisp, described in SICP. [1] Function application corresponds to beta reduction in lambda calculus.
In fact computability can itself be defined via the lambda calculus: a function F: N → N of natural numbers is a computable function if and only if there exists a lambda expression f such that for every pair of x, y in N, F(x)=y if and only if f x = β y, where x and y are the Church numerals corresponding to x and y, respectively and = β ...
The term closure is often used as a synonym for anonymous function, though strictly, an anonymous function is a function literal without a name, while a closure is an instance of a function, a value, whose non-local variables have been bound either to values or to storage locations (depending on the language; see the lexical environment section below).
The eval() vs. exec() built-in functions (in Python 2, exec is a statement); the former is for expressions, the latter is for statements; Statements cannot be a part of an expression—so list and other comprehensions or lambda expressions, all being expressions, cannot contain statements.
In this Erlang example, the higher-order function or_else/2 takes a list of functions (Fs) and argument (X). It evaluates the function F with the argument X as argument. If the function F returns false then the next function in Fs will be evaluated. If the function F returns {false, Y} then the next function in Fs with argument Y will be
This creates a higher-order function, and passing this higher function itself allows anonymous recursion within the actual recursive function. This can be done purely anonymously by applying a fixed-point combinator to this higher order function. This is mainly of academic interest, particularly to show that the lambda calculus has recursion ...