Search results
Results from the WOW.Com Content Network
These properties are storativity (S), specific storage (S s) and specific yield (S y). According to Groundwater, by Freeze and Cherry (1979), specific storage, [m −1], of a saturated aquifer is defined as the volume of water that a unit volume of the aquifer releases from storage under a unit decline in hydraulic head. [1]
The soil suborders within an order are differentiated on the basis of soil properties and horizons which depend on soil moisture and temperature. Forty-seven suborders are recognized in the United States. [6] The soil great group category is a subdivision of a suborder in which the kind and sequence of soil horizons distinguish one soil from ...
The specific heat of soil increases as water content increases, since the heat capacity of water is greater than that of dry soil. [89] The specific heat of pure water is ~ 1 calorie per gram, the specific heat of dry soil is ~ 0.2 calories per gram, hence, the specific heat of wet soil is ~ 0.2 to 1 calories per gram (0.8 to 4.2 kJ per ...
The fraction of water held back in the aquifer is known as specific retention. Thus it can be said that porosity is the sum of specific yield and specific retention. Specific yield of soils differ from each other in the sense that some soil types have strong molecular attraction with the water held in their pores while others have less.
Water retention curve is the relationship between the water content, θ, and the soil water potential, ψ. The soil moisture curve is characteristic for different types of soil, and is also called the soil moisture characteristic. It is used to predict the soil water storage, water supply to the plants (field capacity) and soil aggregate stability.
Soils that have smaller pore sizes, such as clay, have lower infiltration capacity and slower infiltration rates than soils that have large pore sizes, such as sands. One exception to this rule is when the clay is present in dry conditions. In this case, the soil can develop large cracks which lead to higher infiltration capacity. [3]
Pores (the spaces that exist between soil particles) provide for the passage and/or retention of gasses and moisture within the soil profile.The soil's ability to retain water is strongly related to particle size; water molecules hold more tightly to the fine particles of a clay soil than to coarser particles of a sandy soil, so clays generally retain more water. [2]
Soils are the product of climate, organisms and topography, acting on parent (geologic) material over time. Thus the great diversity of geologic materials, geomorphic processes, climatic conditions, biotic assemblages and land surface ages in the United States is responsible for the presence of an enormous variety of mineral and organic soils.