enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Banach space - Wikipedia

    en.wikipedia.org/wiki/Banach_space

    In mathematics, more specifically in functional analysis, a Banach space (pronounced ) is a complete normed vector space.Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space.

  3. Type and cotype of a Banach space - Wikipedia

    en.wikipedia.org/wiki/Type_and_cotype_of_a...

    In functional analysis, the type and cotype of a Banach space are a classification of Banach spaces through probability theory and a measure, how far a Banach space from a Hilbert space is. The starting point is the Pythagorean identity for orthogonal vectors ( e k ) k = 1 n {\displaystyle (e_{k})_{k=1}^{n}} in Hilbert spaces

  4. Stefan Banach - Wikipedia

    en.wikipedia.org/wiki/Stefan_Banach

    Stefan Banach was born on 30 March 1892 at St. Lazarus General Hospital in Kraków, then part of the Austro-Hungarian Empire, into a Góral Roman Catholic family, [4] and was subsequently baptised by his father. [5] [6] Banach's parents were Stefan Greczek and Katarzyna Banach, both natives of the Podhale region.

  5. List of Banach spaces - Wikipedia

    en.wikipedia.org/wiki/List_of_Banach_spaces

    Tsirelson space, a reflexive Banach space in which neither nor can be embedded. W.T. Gowers construction of a space X {\displaystyle X} that is isomorphic to X ⊕ X ⊕ X {\displaystyle X\oplus X\oplus X} but not X ⊕ X {\displaystyle X\oplus X} serves as a counterexample for weakening the premises of the Schroeder–Bernstein theorem [ 1 ]

  6. Open mapping theorem (functional analysis) - Wikipedia

    en.wikipedia.org/wiki/Open_mapping_theorem...

    In functional analysis, the open mapping theorem, also known as the Banach–Schauder theorem or the Banach theorem [1] (named after Stefan Banach and Juliusz Schauder), is a fundamental result that states that if a bounded or continuous linear operator between Banach spaces is surjective then it is an open map.

  7. Closed range theorem - Wikipedia

    en.wikipedia.org/wiki/Closed_range_theorem

    In the mathematical theory of Banach spaces, the closed range theorem gives necessary and sufficient conditions for a closed densely defined operator to have closed range. The theorem was proved by Stefan Banach in his 1932 Théorie des opérations linéaires .

  8. James's theorem - Wikipedia

    en.wikipedia.org/wiki/James's_theorem

    The topological dual of -Banach space deduced from by any restriction scalar will be denoted ′. (It is of interest only if is a complex space because if is a -space then ′ = ′. James compactness criterion — Let X {\displaystyle X} be a Banach space and A {\displaystyle A} a weakly closed nonempty subset of X . {\displaystyle X.}

  9. Banach–Mazur theorem - Wikipedia

    en.wikipedia.org/wiki/Banach–Mazur_theorem

    On the other hand, the theorem tells us that C 0 ([0, 1], R) is a "really big" space, big enough to contain every possible separable Banach space. Non-separable Banach spaces cannot embed isometrically in the separable space C 0 ([0, 1], R), but for every Banach space X, one can find a compact Hausdorff space K and an isometric linear embedding ...