enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Banach space - Wikipedia

    en.wikipedia.org/wiki/Banach_space

    In mathematics, more specifically in functional analysis, a Banach space (pronounced ) is a complete normed vector space.Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space.

  3. Type and cotype of a Banach space - Wikipedia

    en.wikipedia.org/wiki/Type_and_cotype_of_a...

    In functional analysis, the type and cotype of a Banach space are a classification of Banach spaces through probability theory and a measure, how far a Banach space from a Hilbert space is. The starting point is the Pythagorean identity for orthogonal vectors ( e k ) k = 1 n {\displaystyle (e_{k})_{k=1}^{n}} in Hilbert spaces

  4. Banach–Tarski paradox - Wikipedia

    en.wikipedia.org/wiki/Banach–Tarski_paradox

    The Banach–Tarski paradox is a theorem in set-theoretic geometry, which states the following: Given a solid ball in three-dimensional space, there exists a decomposition of the ball into a finite number of disjoint subsets, which can then be put back together in a different way to yield two identical copies of the original ball. Indeed, the ...

  5. Stefan Banach - Wikipedia

    en.wikipedia.org/wiki/Stefan_Banach

    Stefan Banach was born on 30 March 1892 at St. Lazarus General Hospital in Kraków, then part of the Austro-Hungarian Empire, into a Góral Roman Catholic family, [4] and was subsequently baptised by his father. [5] [6] Banach's parents were Stefan Greczek and Katarzyna Banach, both natives of the Podhale region.

  6. List of Banach spaces - Wikipedia

    en.wikipedia.org/wiki/List_of_Banach_spaces

    Tsirelson space, a reflexive Banach space in which neither nor can be embedded. W.T. Gowers construction of a space X {\displaystyle X} that is isomorphic to X ⊕ X ⊕ X {\displaystyle X\oplus X\oplus X} but not X ⊕ X {\displaystyle X\oplus X} serves as a counterexample for weakening the premises of the Schroeder–Bernstein theorem [ 1 ]

  7. Closed range theorem - Wikipedia

    en.wikipedia.org/wiki/Closed_range_theorem

    In the mathematical theory of Banach spaces, the closed range theorem gives necessary and sufficient conditions for a closed densely defined operator to have closed range. The theorem was proved by Stefan Banach in his 1932 Théorie des opérations linéaires.

  8. Open mapping theorem (functional analysis) - Wikipedia

    en.wikipedia.org/wiki/Open_mapping_theorem...

    In functional analysis, the open mapping theorem, also known as the Banach–Schauder theorem or the Banach theorem [1] (named after Stefan Banach and Juliusz Schauder), is a fundamental result that states that if a bounded or continuous linear operator between Banach spaces is surjective then it is an open map.

  9. Approximation property - Wikipedia

    en.wikipedia.org/wiki/Approximation_property

    The construction of a Banach space without the approximation property earned Per Enflo a live goose in 1972, which had been promised by Stanisław Mazur (left) in 1936. [1] In mathematics, specifically functional analysis, a Banach space is said to have the approximation property (AP), if every compact operator is a limit of finite-rank ...