Search results
Results from the WOW.Com Content Network
In linear algebra, the outer product of two coordinate vectors is the matrix whose entries are all products of an element in the first vector with an element in the second vector. If the two coordinate vectors have dimensions n and m , then their outer product is an n × m matrix.
Simply, in coordinates, the inner product is the product of a covector with an vector, yielding a matrix (a scalar), while the outer product is the product of an vector with a covector, yielding an matrix. The outer product is defined for different dimensions, while the inner product requires the same dimension.
Hadamard product (matrices) Hilbert–Schmidt inner product; Kronecker product; Matrix analysis; Matrix multiplication; Matrix norm; Tensor product of Hilbert spaces – the Frobenius inner product is the special case where the vector spaces are finite-dimensional real or complex vector spaces with the usual Euclidean inner product
The inner product of two vectors over the field of complex numbers is, in general, a complex number, and is sesquilinear instead of bilinear. An inner product space is a normed vector space, and the inner product of a vector with itself is real and positive-definite.
Matrix multiplication is thus a basic tool of linear algebra, and as such has numerous applications in many areas of mathematics, as well as in applied mathematics, statistics, physics, economics, and engineering. [3] [4] Computing matrix products is a central operation in all computational applications of linear algebra.
Multilinear algebra is the study of functions with multiple vector-valued arguments, with the functions being linear maps with respect to each argument. It involves concepts such as matrices, tensors, multivectors, systems of linear equations, higher-dimensional spaces, determinants, inner and outer products, and dual spaces.
In the special case v i = w i, the inner product is the square norm of the k-vector, given by the determinant of the Gramian matrix ( v i, v j ). This is then extended bilinearly (or sesquilinearly in the complex case) to a non-degenerate inner product on ⋀ k ( V ) . {\displaystyle {\textstyle \bigwedge }^{\!k}(V).}
The inner product on vectors can also be generalized, but in more than one non-equivalent way. The paper gives a full treatment of several different inner products developed for geometric algebras and their interrelationships, and the notation is taken from there. Many authors use the same symbol as for the inner product of vectors for their ...