Ads
related to: define poset with example words worksheet middle schoolteacherspayteachers.com has been visited by 100K+ users in the past month
- Packets
Perfect for independent work!
Browse our fun activity packs.
- Assessment
Creative ways to see what students
know & help them with new concepts.
- Resources on Sale
The materials you need at the best
prices. Shop limited time offers.
- Worksheets
All the printables you need for
math, ELA, science, and much more.
- Packets
ixl.com has been visited by 100K+ users in the past month
Search results
Results from the WOW.Com Content Network
A partially ordered set (poset for short) is an ordered pair = (,) consisting of a set (called the ground set of ) and a partial order on . When the meaning is clear from context and there is no ambiguity about the partial order, the set X {\displaystyle X} itself is sometimes called a poset.
A Scott domain is a partially ordered set which is a bounded complete algebraic cpo. Scott open. See Scott topology. Scott topology. For a poset P, a subset O is Scott-open if it is an upper set and all directed sets D that have a supremum in O have non-empty intersection with O. The set of all Scott-open sets forms a topology, the Scott topology.
2. An inductive definition is a definition that specifies how to construct members of a set based on members already known to be in the set, often used for defining recursively defined sequences, functions, and structures. 3. A poset is called inductive if every non-empty ordered subset has an upper bound infinity axiom See Axiom of infinity.
In mathematics, specifically category theory, a posetal category, or thin category, [1] is a category whose homsets each contain at most one morphism. [2] As such, a posetal category amounts to a preordered class (or a preordered set, if its objects form a set).
A power set, partially ordered by inclusion, with rank defined as number of elements, forms a graded poset. In mathematics, in the branch of combinatorics, a graded poset is a partially-ordered set (poset) P equipped with a rank function ρ from P to the set N of all natural numbers. ρ must satisfy the following two properties:
The poset of positive integers has deviation 0: every descending chain is finite, so the defining condition for deviation is vacuously true. However, its opposite poset has deviation 1. Let k be an algebraically closed field and consider the poset of ideals of the polynomial ring k[x] in one variable. Since the deviation of this poset is the ...
Thus, an equivalent definition of the dimension of a poset P is "the least cardinality of a realizer of P." It can be shown that any nonempty family R of linear extensions is a realizer of a finite partially ordered set P if and only if, for every critical pair ( x , y ) of P , y < i x for some order < i in R .
For example, the ideal completion of a given partial order P is the set of all ideals of P ordered by subset inclusion. This construction yields the free dcpo generated by P . An ideal is principal if and only if it is compact in the ideal completion, so the original poset can be recovered as the sub-poset consisting of compact elements.
Ads
related to: define poset with example words worksheet middle schoolteacherspayteachers.com has been visited by 100K+ users in the past month
ixl.com has been visited by 100K+ users in the past month