Search results
Results from the WOW.Com Content Network
Water retention curve is the relationship between the water content, θ, and the soil water potential, ψ. The soil moisture curve is characteristic for different types of soil, and is also called the soil moisture characteristic. It is used to predict the soil water storage, water supply to the plants (field capacity) and soil aggregate stability.
It is also known as available water content (AWC), profile available water (PAW) [2] or total available water (TAW). The concept, put forward by Frank Veihmeyer and Arthur Hendrickson, [3] assumed that the water readily available to plants is the difference between the soil water content at field capacity (θ fc) and permanent wilting point (θ ...
Water content or moisture content is the quantity of water contained in a material, such as soil (called soil moisture), rock, ceramics, crops, or wood. Water content is used in a wide range of scientific and technical areas, and is expressed as a ratio, which can range from 0 (completely dry) to the value of the materials' porosity at saturation.
Field capacity is the amount of soil moisture or water content held in the soil after excess water has drained away and the rate of downward movement has decreased. This usually occurs two to three days after rain or irrigation in pervious soils of uniform structure and texture.
The Atterberg limits are a basic measure of the critical water contents of a fine-grained soil: its shrinkage limit, plastic limit, and liquid limit. Depending on its water content, soil may appear in one of four states: solid, semi-solid, plastic and liquid. In each state, the consistency and behavior of soil are different, and consequently so ...
Soil moisture is the water content of the soil. It can be expressed in terms of volume or weight. Soil moisture measurement can be based on in situ probes (e.g., capacitance probes, neutron probes) or remote sensing methods. [1] [2] Water that enters a field is removed from a field by runoff, drainage, evaporation or transpiration. [3]
Calculation of the true sorptivity required numerical iterative procedures dependent on soil water content and diffusivity. John R. Philip (1969) showed that sorptivity can be determined from horizontal infiltration where water flow is mostly controlled by capillary absorption: I = S t {\displaystyle I=S{\sqrt {t}}} where S is sorptivity and I ...
The maximum rate at that water can enter soil in a given condition is the infiltration capacity. If the arrival of the water at the soil surface is less than the infiltration capacity, it is sometimes analyzed using hydrology transport models, mathematical models that consider infiltration, runoff, and channel flow to predict river flow rates ...