Search results
Results from the WOW.Com Content Network
In Euclidean geometry, the intersecting chords theorem, or just the chord theorem, is a statement that describes a relation of the four line segments created by two intersecting chords within a circle. It states that the products of the lengths of the line segments on each chord are equal.
Equal chords are subtended by equal angles from the center of the circle. A chord that passes through the center of a circle is called a diameter and is the longest chord of that specific circle. If the line extensions (secant lines) of chords AB and CD intersect at a point P, then their lengths satisfy AP·PB = CP·PD (power of a point theorem).
The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.
Secant-, chord-theorem. For the intersecting secants theorem and chord theorem the power of a point plays the role of an invariant: . Intersecting secants theorem: For a point outside a circle and the intersection points , of a secant line with the following statement is true: | | | | = (), hence the product is independent of line .
The sum of the squared lengths of any two chords intersecting at right angles at a given point is the same as that of any other two perpendicular chords intersecting at the same point and is given by 8r 2 − 4p 2, where r is the circle radius, and p is the distance from the centre point to the point of intersection. [14]
The constant chord theorem is a statement in elementary geometry about a property of certain chords in two intersecting circles. The circles k 1 {\displaystyle k_{1}} and k 2 {\displaystyle k_{2}} intersect in the points P {\displaystyle P} and Q {\displaystyle Q} .
A circular segment (in green) is enclosed between a secant/chord (the dashed line) and the arc whose endpoints equal the chord's (the arc shown above the green area). In geometry, a circular segment or disk segment (symbol: ⌓) is a region of a disk [1] which is "cut off" from the rest of the disk by a straight line.
A circle is drawn centered on the midpoint of the line segment OP, having diameter OP, where O is again the center of the circle C. The intersection points T 1 and T 2 of the circle C and the new circle are the tangent points for lines passing through P, by the following argument.