enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exponential function - Wikipedia

    en.wikipedia.org/wiki/Exponential_function

    From any of these definitions it can be shown that ex is the reciprocal of e x. For example, from the differential equation definition, e x ex = 1 when x = 0 and its derivative using the product rule is e x exe x ex = 0 for all x, so e x ex = 1 for all x.

  3. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    The derivative of the function at a point is the slope of the line tangent to the curve at the point. Slope of the constant function is zero, because the tangent line to the constant function is horizontal and its angle is zero. In other words, the value of the constant function, y, will not change as the value of x increases or decreases.

  4. Power rule - Wikipedia

    en.wikipedia.org/wiki/Power_rule

    In calculus, the power rule is used to differentiate functions of the form () =, whenever is a real number. Since differentiation is a linear operation on the space of differentiable functions, polynomials can also be differentiated using this rule.

  5. Matrix exponential - Wikipedia

    en.wikipedia.org/wiki/Matrix_exponential

    We begin with the properties that are immediate consequences of the definition as a power series: e 0 = I; exp(X T) = (exp X) T, where X T denotes the transpose of X. exp(X ∗) = (exp X) ∗, where X ∗ denotes the conjugate transpose of X. If Y is invertible then e YXY −1 = Ye X Y −1. The next key result is this one:

  6. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    The original proof is based on the Taylor series expansions of the exponential function e z (where z is a complex number) and of sin x and cos x for real numbers x . In fact, the same proof shows that Euler's formula is even valid for all complex numbers x .

  7. Differential of a function - Wikipedia

    en.wikipedia.org/wiki/Differential_of_a_function

    A number of properties of the differential follow in a straightforward manner from the corresponding properties of the derivative, partial derivative, and total derivative. These include: [ 11 ] Linearity : For constants a and b and differentiable functions f and g , d ( a f + b g ) = a d f + b d g . {\displaystyle d(af+bg)=a\,df+b\,dg.}

  8. Characterizations of the exponential function - Wikipedia

    en.wikipedia.org/wiki/Characterizations_of_the...

    Define () = to be the unique solution to the differential equation with initial value: ′ =, =, where ′ = denotes the derivative of y. Functional equation. The exponential function e x {\displaystyle e^{x}} is the unique function f with the multiplicative property f ( x + y ) = f ( x ) f ( y ) {\displaystyle f(x+y)=f(x)f(y)} for all x , y ...

  9. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.