Search results
Results from the WOW.Com Content Network
There is a corresponding greatest-lower-bound property; an ordered set possesses the greatest-lower-bound property if and only if it also possesses the least-upper-bound property; the least-upper-bound of the set of lower bounds of a set is the greatest-lower-bound, and the greatest-lower-bound of the set of upper bounds of a set is the least ...
Thus, the infimum or meet of a collection of subsets is the greatest lower bound while the supremum or join is the least upper bound. In this context, the inner limit, lim inf X n, is the largest meeting of tails of the sequence, and the outer limit, lim sup X n, is the smallest joining of tails of the sequence. The following makes this precise.
The Lebesgue outer measure emerges as the greatest lower bound (infimum) of the lengths from among all possible such sets. Intuitively, it is the total length of those interval sets which fit most tightly and do not overlap. That characterizes the Lebesgue outer measure.
The set S = {42} has 42 as both an upper bound and a lower bound; all other numbers are either an upper bound or a lower bound for that S. Every subset of the natural numbers has a lower bound since the natural numbers have a least element (0 or 1, depending on convention). An infinite subset of the natural numbers cannot be bounded from above.
If (,) is a partially ordered set, such that each pair of elements in has a meet, then indeed = if and only if , since in the latter case indeed is a lower bound of , and since is the greatest lower bound if and only if it is a lower bound. Thus, the partial order defined by the meet in the universal algebra approach coincides with the original ...
Every subset of a complete Boolean algebra has a supremum, by definition; it follows that every subset also has an infimum (greatest lower bound). For a complete boolean algebra, both infinite distributive laws hold if and only if it is isomorphic to the powerset of some set. [citation needed]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In many specialized areas of order theory, one restricts to classes of partially ordered sets that are complete with respect to certain limit constructions. For example, in lattice theory, one is interested in orders where all finite non-empty sets have both a least upper bound and a greatest lower bound.