enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Factorization of polynomials - Wikipedia

    en.wikipedia.org/wiki/Factorization_of_polynomials

    In mathematics and computer algebra, factorization of polynomials or polynomial factorization expresses a polynomial with coefficients in a given field or in the integers as the product of irreducible factors with coefficients in the same domain. Polynomial factorization is one of the fundamental components of computer algebra systems.

  3. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    The polynomial x 2 + cx + d, where a + b = c and ab = d, can be factorized into (x + a)(x + b).. In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind.

  4. Factorization of polynomials over finite fields - Wikipedia

    en.wikipedia.org/wiki/Factorization_of...

    Polynomial factoring algorithms use basic polynomial operations such as products, divisions, gcd, powers of one polynomial modulo another, etc. A multiplication of two polynomials of degree at most n can be done in O(n 2) operations in F q using "classical" arithmetic, or in O(nlog(n) log(log(n)) ) operations in F q using "fast" arithmetic.

  5. Fermat's factorization method - Wikipedia

    en.wikipedia.org/wiki/Fermat's_factorization_method

    Fermat's factorization method, named after Pierre de Fermat, is based on the representation of an odd integer as the difference of two squares: =. That difference is algebraically factorable as (+) (); if neither factor equals one, it is a proper factorization of N.

  6. Matrix factorization of a polynomial - Wikipedia

    en.wikipedia.org/wiki/Matrix_factorization_of_a...

    In mathematics, a matrix factorization of a polynomial is a technique for factoring irreducible polynomials with matrices. David Eisenbud proved that every multivariate real-valued polynomial p without linear terms can be written as AB = pI , where A and B are square matrices and I is the identity matrix . [ 1 ]

  7. Berlekamp's algorithm - Wikipedia

    en.wikipedia.org/wiki/Berlekamp's_algorithm

    In mathematics, particularly computational algebra, Berlekamp's algorithm is a well-known method for factoring polynomials over finite fields (also known as Galois fields). The algorithm consists mainly of matrix reduction and polynomial GCD computations. It was invented by Elwyn Berlekamp in 1967.

  8. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    When considering equations, the indeterminates (variables) of polynomials are also called unknowns, and the solutions are the possible values of the unknowns for which the equality is true (in general more than one solution may exist). A polynomial equation stands in contrast to a polynomial identity like (x + y)(x − y) = x 2 − y 2, where ...

  9. Rational root theorem - Wikipedia

    en.wikipedia.org/wiki/Rational_root_theorem

    Solutions of the equation are also called roots or zeros of the polynomial on the left side. The theorem states that each rational solution x = p ⁄ q, written in lowest terms so that p and q are relatively prime, satisfies: p is an integer factor of the constant term a 0, and; q is an integer factor of the leading coefficient a n.