enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tensor - Wikipedia

    en.wikipedia.org/wiki/Tensor

    A metric tensor is a (symmetric) (0, 2)-tensor; it is thus possible to contract an upper index of a tensor with one of the lower indices of the metric tensor in the product. This produces a new tensor with the same index structure as the previous tensor, but with lower index generally shown in the same position of the contracted upper index.

  3. Covariance and contravariance of vectors - Wikipedia

    en.wikipedia.org/wiki/Covariance_and_contra...

    Likewise, vectors whose components are contravariant push forward under smooth mappings, so the operation assigning the space of (contravariant) vectors to a smooth manifold is a covariant functor. Secondly, in the classical approach to differential geometry, it is not bases of the tangent bundle that are the most primitive object, but rather ...

  4. Cartesian tensor - Wikipedia

    en.wikipedia.org/wiki/Cartesian_tensor

    A dyadic tensor T is an order-2 tensor formed by the tensor product ⊗ of two Cartesian vectors a and b, written T = a ⊗ b.Analogous to vectors, it can be written as a linear combination of the tensor basis e x ⊗ e x ≡ e xx, e x ⊗ e y ≡ e xy, ..., e z ⊗ e z ≡ e zz (the right-hand side of each identity is only an abbreviation, nothing more):

  5. Outer product - Wikipedia

    en.wikipedia.org/wiki/Outer_product

    If the two coordinate vectors have dimensions n and m, then their outer product is an n × m matrix. More generally, given two tensors (multidimensional arrays of numbers), their outer product is a tensor. The outer product of tensors is also referred to as their tensor product, and can be used to define the tensor algebra.

  6. Tensor product - Wikipedia

    en.wikipedia.org/wiki/Tensor_product

    The tensor product of two vector spaces is a vector space that is defined up to an isomorphism.There are several equivalent ways to define it. Most consist of defining explicitly a vector space that is called a tensor product, and, generally, the equivalence proof results almost immediately from the basic properties of the vector spaces that are so defined.

  7. Covariant transformation - Wikipedia

    en.wikipedia.org/wiki/Covariant_transformation

    In physics, a covariant transformation is a rule that specifies how certain entities, such as vectors or tensors, change under a change of basis. [1] The transformation that describes the new basis vectors as a linear combination of the old basis vectors is defined as a covariant transformation.

  8. Tensor (intrinsic definition) - Wikipedia

    en.wikipedia.org/wiki/Tensor_(intrinsic_definition)

    The tensors of order zero are just the scalars (elements of the field F), those of contravariant order 1 are the vectors in V, and those of covariant order 1 are the one-forms in V ∗ (for this reason, the elements of the last two spaces are often called the contravariant and covariant vectors). The space of all tensors of type (m, n) is ...

  9. Dyadics - Wikipedia

    en.wikipedia.org/wiki/Dyadics

    The tensor product of V and its dual space is isomorphic to the space of linear maps from V to V: a dyadic tensor vf is simply the linear map sending any w in V to f(w)v. When V is Euclidean n-space, we can use the inner product to identify the dual space with V itself, making a dyadic tensor an elementary tensor product of two vectors in ...