enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Glycolysis - Wikipedia

    en.wikipedia.org/wiki/Glycolysis

    Glycolysis is the metabolic pathway that converts glucose (C 6 H 12 O 6) into pyruvate and, in most organisms, occurs in the liquid part of cells (the cytosol). The free energy released in this process is used to form the high-energy molecules adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide (NADH). [ 1 ]

  3. Template:Glycolysis summary - Wikipedia

    en.wikipedia.org/wiki/Template:Glycolysis_summary

    "The metabolic pathway of glycolysis converts glucose to pyruvate via a series of intermediate metabolites. Each chemical modification (red box) is performed by a different enzyme. Steps 1 and 3 consume ATP (blue) and steps 7 and 10 produce ATP (yellow). Since steps 6-10 occur twice per glucose molecule, this leads to a net production of energy."

  4. Polyol pathway - Wikipedia

    en.wikipedia.org/wiki/Polyol_pathway

    The polyol pathway is a two-step process that converts glucose to fructose. [1] In this pathway glucose is reduced to sorbitol, which is subsequently oxidized to fructose. It is also called the sorbitol-aldose reductase pathway. The pathway is implicated in diabetic complications, especially in microvascular damage to the retina, [2] kidney, [3 ...

  5. Adenosine diphosphate - Wikipedia

    en.wikipedia.org/wiki/Adenosine_diphosphate

    The ten-step catabolic pathway of glycolysis is the initial phase of free-energy release in the breakdown of glucose and can be split into two phases, the preparatory phase and payoff phase. ADP and phosphate are needed as precursors to synthesize ATP in the payoff reactions of the TCA cycle and oxidative phosphorylation mechanism. [ 4 ]

  6. Bioenergetic systems - Wikipedia

    en.wikipedia.org/wiki/Bioenergetic_systems

    Though slower than glucose, its yield is much higher. One molecule of glucose produces through aerobic glycolysis a net of 30-32 ATP; [11] whereas a fatty acid can produce through beta oxidation a net of approximately 100 ATP depending on the type of fatty acid. For example, palmitic acid can produce a net of 106 ATP. [12]

  7. Glucose 6-phosphate - Wikipedia

    en.wikipedia.org/wiki/Glucose_6-phosphate

    In addition to these two metabolic pathways, glucose 6-phosphate may also be converted to glycogen or starch for storage. This storage is in the liver and muscles in the form of glycogen for most multicellular animals , and in intracellular starch or glycogen granules for most other organisms.

  8. Phosphoglycerate kinase - Wikipedia

    en.wikipedia.org/wiki/Phosphoglycerate_kinase

    In the glycolytic pathway, 1,3-BPG is the phosphate donor and has a high phosphoryl-transfer potential. The PGK-catalyzed transfer of the phosphate group from 1,3-BPG to ADP to yield ATP can power [clarification needed] the carbon-oxidation reaction of the previous glycolytic step (converting glyceraldehyde 3-phosphate to 3-phosphoglycerate).

  9. Hexokinase - Wikipedia

    en.wikipedia.org/wiki/Hexokinase

    By catalyzing the phosphorylation of glucose to yield glucose 6-phosphate, hexokinases maintain the downhill concentration gradient that favors the facilitated transport of glucose into cells. This reaction also initiates all physiologically relevant pathways of glucose utilization, including glycolysis and the pentose phosphate pathway. [9]