Search results
Results from the WOW.Com Content Network
For two circles, there are generally four distinct lines that are tangent to both – if the two circles are outside each other – but in degenerate cases there may be any number between zero and four bitangent lines; these are addressed below. For two of these, the external tangent lines, the circles fall on the same side of the line; for the ...
In geometry, tangent circles (also known as kissing circles) are circles in a common plane that intersect in a single point. There are two types of tangency : internal and external. Many problems and constructions in geometry are related to tangent circles; such problems often have real-life applications such as trilateration and maximizing the ...
Ford circles also appear in the Sangaku (geometrical puzzles) of Japanese mathematics. A typical problem, which is presented on an 1824 tablet in the Gunma Prefecture, covers the relationship of three touching circles with a common tangent. Given the size of the two outer large circles, what is the size of the small circle between them?
If P, T 1, T 2 lie on a common tangent, then P is the midpoint of ¯. In Euclidean geometry, the radical axis of two non-concentric circles is the set of points whose power with respect to the circles are equal. For this reason the radical axis is also called the power line or power bisector of the two circles. In detail:
If , are tangent from different sides of (one in and one out), is the length of the interior common tangent. The converse of Casey's theorem is also true. [4] That is, if equality holds, the circles are tangent to a common circle.
In case of = | | the circles touch each other at point outside (both circles on different sides of the common tangent line). Further more: If the circles lie disjoint (the discs have no points in common), the outside common tangents meet at E {\displaystyle E} and the inner ones at I {\displaystyle I} .
In case of = the circles have one point in common and the radical line is a common tangent. Any general case as written above can be transformed by a shift and a rotation into the special case. The intersection of two disks (the interiors of the two circles) forms a shape called a lens.
There are two possible reasons for the method of finding the tangents based on the limits and derivatives to fail: either the geometric tangent exists, but it is a vertical line, which cannot be given in the point-slope form since it does not have a slope, or the graph exhibits one of three behaviors that precludes a geometric tangent.