Search results
Results from the WOW.Com Content Network
In such a presentation, the notions of length and angle are defined by means of the dot product. The length of a vector is defined as the square root of the dot product of the vector by itself, and the cosine of the (non oriented) angle between two vectors of length one is defined as their dot product. So the equivalence of the two definitions ...
An alternative way to eliminate taking square roots in the decomposition is to compute the LDL decomposition =, then solving = for y, and finally solving =. For linear systems that can be put into symmetric form, the Cholesky decomposition (or its LDL variant) is the method of choice, for superior efficiency and numerical stability.
This norm can be defined as the square root of the inner product of a vector with itself. A seminorm satisfies the first two properties of a norm, but may be zero for vectors other than the origin. [1] A vector space with a specified norm is called a normed vector space.
The validity of this rule follows from the validity of the Feynman method, for one may always substitute a subscripted del and then immediately drop the subscript under the condition of the rule. For example, from the identity A ⋅( B × C ) = ( A × B )⋅ C we may derive A ⋅(∇× C ) = ( A ×∇)⋅ C but not ∇⋅( B × C ) = (∇× B ...
The norm of a quaternion (the square root of the product with its conjugate, as with complex numbers) is the square root of the determinant of the corresponding matrix. [30] The scalar part of a quaternion is one half of the matrix trace. The conjugate of a quaternion corresponds to the conjugate transpose of the matrix.
The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The square root of the common norm of a quaternion is equal to its tensor. T q = q K q {\displaystyle \mathbf {T} q={\sqrt {qKq}}} A useful identity is that the square of the tensor of a quaternion is equal to the tensor of the square of a quaternion, so that the parentheses may be omitted.