Search results
Results from the WOW.Com Content Network
MM XRD: Free open-source: Java 3D applet or standalone program: Ovito: MM XRD EM MD: Free open-source: Python [13] [14] PyMOL: MM XRD SMI EM: Open-source [15] Python [16] [self-published source?] According to the author, almost 1/4 of all published images of 3D protein structures in the scientific literature were made via PyMOL. [citation ...
To determine the crystallographic orientation of the grains in the considered sample, the following software packages are in use: Fable [8] and GrainSpotter. [9] Reconstructing the 3D shape of the grains is nontrivial and three approaches are available to do so, respectively based on simple back-projection, forward projection, algebraic ...
A powder X-ray diffractometer in motion. X-ray crystallography is the experimental science of determining the atomic and molecular structure of a crystal, in which the crystalline structure causes a beam of incident X-rays to diffract in specific directions.
X-ray diffraction computed tomography is an experimental technique that combines X-ray diffraction with the computed tomography data acquisition approach. X-ray diffraction (XRD) computed tomography (CT) was first introduced in 1987 by Harding et al. [1] using a laboratory diffractometer and a monochromatic X-ray pencil beam.
Barkla created the x-ray notation for sharp spectral lines, noting in 1909 two separate energies, at first, naming them "A" and "B" and, supposing that there may be lines prior to "A", he started an alphabet numbering beginning with "K." [2] [3] Single-slit experiments in the laboratory of Arnold Sommerfeld suggested that X-rays had a ...
calculation of () Radial distribution function for the Lennard-Jones model fluid at =, =.. In statistical mechanics, the radial distribution function, (or pair correlation function) () in a system of particles (atoms, molecules, colloids, etc.), describes how density varies as a function of distance from a reference particle.
The Voigt profile is normalized: (;,) =,since it is a convolution of normalized profiles. The Lorentzian profile has no moments (other than the zeroth), and so the moment-generating function for the Cauchy distribution is not defined.
[6] [3] The beam used in SAD is broad illuminating a wide sample area. In order to analyze only a specific sample area, the selected area aperture in the image plane is used. This is in contrast with nanodiffraction, where the site-selectivity is achieved using a beam condensed to a narrow probe. [3]