Search results
Results from the WOW.Com Content Network
English: This is an annotated diagram of translocation of sucrose within the phloem. This happens within a plant during photosynthesis. The annotations within the diagram detail the flow of water and other solutes in the phloem caused by the concentration gradient.
Plants regulate the rate of transpiration by controlling the size of the stomatal apertures. The rate of transpiration is also influenced by the evaporative demand of the atmosphere surrounding the leaf such as boundary layer conductance, humidity , temperature , wind, and incident sunlight.
3- Water moves from the xylem into the mesophyll cells, evaporates from their surfaces and leaves the plant by diffusion through the stomata. In plants, the transpiration stream is the uninterrupted stream of water and solutes which is taken up by the roots and transported via the xylem to the leaves where it evaporates into the air/ apoplast ...
This is the only type of xylem found in the earliest vascular plants, and this type of cell continues to be found in the protoxylem (first-formed xylem) of all living groups of vascular plants. Several groups of plants later developed pitted tracheid cells independently through convergent evolution.
Phloem (/ ˈ f l oʊ. əm /, FLOH-əm) is the living tissue in vascular plants that transports the soluble organic compounds made during photosynthesis and known as photosynthates, in particular the sugar sucrose, [1] to the rest of the plant. This transport process is called translocation. [2]
The ascent of sap in the xylem tissue of plants is the upward movement of water and minerals from the root to the aerial parts of the plant. The conducting cells in xylem are typically non-living and include, in various groups of plants, vessel members and tracheids.
The pressure flow hypothesis, also known as the mass flow hypothesis, is the best-supported theory to explain the movement of sap through the phloem of plants. [1] [2] It was proposed in 1930 by Ernst Münch, a German plant physiologist. [3]
Twin-arginine translocation pathway, a protein export pathway found in plants, bacteria, and archaea; Translocation (botany), transport of nutrients through phloem; Protein translocation, also called protein targeting, a process in protein biosynthesis; Species translocation, movement of a species, by people, from one area to another