Search results
Results from the WOW.Com Content Network
The LSE function is often encountered when the usual arithmetic computations are performed on a logarithmic scale, as in log probability. [5]Similar to multiplication operations in linear-scale becoming simple additions in log-scale, an addition operation in linear-scale becomes the LSE in log-scale:
The definition of e x as the exponential function allows defining b x for every positive real numbers b, in terms of exponential and logarithm function. Specifically, the fact that the natural logarithm ln(x) is the inverse of the exponential function e x means that one has = () =
So, the derivative of the sum can be computed by term-by-term derivation, and this shows that the sum of the series satisfies the above definition. This is a second existence proof, and shows, as a byproduct, that the exponential function is defined for every x {\displaystyle x} , and is everywhere the sum of its Maclaurin series .
These are the three main logarithm laws/rules/principles, [3] from which the other properties listed above can be proven. Each of these logarithm properties correspond to their respective exponent law, and their derivations/proofs will hinge on those facts. There are multiple ways to derive/prove each logarithm law – this is just one possible ...
In mathematics, the logarithm to base b is the inverse function of exponentiation with base b. That means that the logarithm of a number x to the base b is the exponent to which b must be raised to produce x. For example, since 1000 = 10 3, the logarithm base of 1000 is 3, or log 10 (1000) = 3.
The number e is a mathematical constant approximately equal to 2.71828 that is the base of the natural logarithm and exponential function.It is sometimes called Euler's number, after the Swiss mathematician Leonhard Euler, though this can invite confusion with Euler numbers, or with Euler's constant, a different constant typically denoted .
In mathematics, the exponential function can be characterized in many ways. This article presents some common characterizations, discusses why each makes sense, and proves that they are all equivalent. The exponential function occurs naturally in many branches of mathematics. Walter Rudin called it "the most important function in mathematics". [1]
The sum of exponentials is a useful model in pharmacokinetics (chemical kinetics in general) for describing the concentration of a substance over time. The exponential terms correspond to first-order reactions, which in pharmacology corresponds to the number of modelled diffusion compartments. [2] [3]