Search results
Results from the WOW.Com Content Network
For a stationary synchronous orbit: = [2] G = Gravitational constant m 2 = Mass of the celestial body T = rotational period of the body = Radius of orbit. By this formula one can find the stationary orbit of an object in relation to a given body.
In astrodynamics, an orbit equation defines the path of orbiting body around central body relative to , without specifying position as a function of time.Under standard assumptions, a body moving under the influence of a force, directed to a central body, with a magnitude inversely proportional to the square of the distance (such as gravity), has an orbit that is a conic section (i.e. circular ...
A circular geosynchronous orbit has a constant altitude of 35,786 km (22,236 mi). [1] A special case of geosynchronous orbit is the geostationary orbit (often abbreviated GEO), which is a circular geosynchronous orbit in Earth's equatorial plane with both inclination and eccentricity equal to 0. A satellite in a geostationary orbit remains in ...
A special case of the geosynchronous orbit, the geostationary orbit, has an eccentricity of zero (meaning the orbit is circular), and an inclination of zero in the Earth-Centered, Earth-Fixed coordinate system (meaning the orbital plane is not tilted relative to the Earth's equator). The "ground track" in this case consists of a single point on ...
The longitude of the ascending node, Ω, the inclination, i, and the argument of periapsis, ω, or the longitude of periapsis, ϖ, specify the orientation of the orbit in its plane. Either the longitude at epoch, L 0, the mean anomaly at epoch, M 0, or the time of perihelion passage, T 0, are used to specify a known point in the orbit. The ...
A geostationary orbit, also referred to as a geosynchronous equatorial orbit [a] (GEO), is a circular geosynchronous orbit 35,786 km (22,236 mi) in altitude above Earth's equator, 42,164 km (26,199 mi) in radius from Earth's center, and following the direction of Earth's rotation.
The period of the resultant orbit will be less than that of the original circular orbit. Thrust applied in the direction of the satellite's motion creates an elliptical orbit with its highest point 180 degrees away from the firing point. The period of the resultant orbit will be longer than that of the original circular orbit.
A value of 0 is a circular orbit, values between 0 and 1 form an elliptic orbit, 1 is a parabolic escape orbit (or capture orbit), and greater than 1 is a hyperbola. The term derives its name from the parameters of conic sections , as every Kepler orbit is a conic section.