Search results
Results from the WOW.Com Content Network
The tennis racket theorem or intermediate axis theorem, is a kinetic phenomenon of classical mechanics which describes the movement of a rigid body with three distinct principal moments of inertia. It has also been dubbed the Dzhanibekov effect , after Soviet cosmonaut Vladimir Dzhanibekov , who noticed one of the theorem's logical consequences ...
Moment of inertia, denoted by I, measures the extent to which an object resists rotational acceleration about a particular axis; it is the rotational analogue to mass (which determines an object's resistance to linear acceleration). The moments of inertia of a mass have units of dimension ML 2 ([mass] × [length] 2).
The moment of inertia I is also defined as the ratio of the net angular momentum L of a system to its angular velocity ω around a principal axis, [8] [9] that is =. If the angular momentum of a system is constant, then as the moment of inertia gets smaller, the angular velocity must increase.
Also in some frames not tied to the body can it be possible to obtain such simple (diagonal tensor) equations for the rate of change of the angular momentum. Then ω must be the angular velocity for rotation of that frames axes instead of the rotation of the body. It is however still required that the chosen axes are still principal axes of ...
In classical mechanics, the stretch rule (sometimes referred to as Routh's rule) states that the moment of inertia of a rigid object is unchanged when the object is stretched parallel to an axis of rotation that is a principal axis, provided that the distribution of mass remains unchanged except in the direction parallel to the axis. [1]
As described in the tennis racket theorem, rotation of an object around its first or third principal axis is stable, while rotation around its second principal axis (or intermediate axis) is not. The motion is simplified in the case of an axisymmetric body, in which the moment of inertia is the same about two of the principal axes.
The perpendicular axis theorem (or plane figure theorem) states that for a planar lamina with a uniform mass distribution, the moment of inertia about an axis perpendicular to the plane of the lamina is equal to the sum of the moments of inertia about two mutually perpendicular axes in the plane of the lamina, which intersect at the point where the perpendicular axis passes through.
Inertia is the natural tendency of objects in motion to stay in motion and objects at rest to stay at rest, unless a force causes the velocity to change. It is one of the fundamental principles in classical physics, and described by Isaac Newton in his first law of motion (also known as The Principle of Inertia). [1]